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Abstract

The theory of Massera and Schéffer relating the existence
of unigue almost periodic solutions of an inhomogeneous linear
equation to an exponential dichotomy for the homogeneous
equation has been completely extended to discretizations by
a strongly stable difference scheme. In addition it has been

~shown that the almost periodic sequence solution will converge

to the differential equation solution at a rate 0(xP) where p
is the accuracy of the scheme, uniformly in t,_if the coeffi-~
cients are sufficieﬁtly sﬁooth.

The preceding theory has also been applied to a class
of exponentially stable partial differential equations to
which one can apply the Hille-Yoshida Theorem. It is possible
to prove the existence of uniqué almost periodic solutions of.
the inhomogeneous eqguation which can be approximated by
almost periodic sequences which are the solutions to appropri-
ate discretizations. Two methods of discretizations are
discussed; the strongly stable scheme described above and

the Lax-Wendroff scheme.

PATCTDING PAGE BLANK NOT FILMED
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Introduction

This work extends certain facets of the theory ofd
Massera and Schéffef [1] (in the future réferred to as M&S)
relating properties of the solution of an inhomogeneous
ordinary differential eqﬁation (ODE) to properties of the
solutions of the homogeneous system. In Part I we extend
this theory to difference approximations of the ODE. In
Part II we use the ODE theory, exclusively in the stable
case, together with the Hille-Yoshida Theorem to obtain
results for partial differential equations.

The study of admissibility theory and dichotomy theory
for difference equations was first done by Coffman and
Schaffer [2]. This work differs from their work in that we
are concerned with the preservation of admissibility and
dichotomy properties by a difference equationwhich is used
to approximate an ODE system which has certain of these
properties.

First let us review the theory of M&S. Consider the

equations
(0.1) vy = A(t)y
(0.2) y = A(t)y + £(t)

Here the independent variable t ranges over the whole real
line and for each t the vector y(t) lies in a Banach
space E (which may be infinite dimensional). &a{t), for

each fixed t, belongs to the space of bounded operators on E



which we will denote by L(E,E). Let B and D be two
Banach spaces of a function from the real line into E.

We say the pair (B,D) is admissible for (0.2) if

a}) ¥Yf € B Ja unique solution y (to (0.2)) € b, and
(0.3)
b} Iyl < Kiflg .

This definition is more restrictive than that of M&S. We are
not going to deal with all the subtleties of their theory,
but just with certain important parts. It is pointed out,
however, that (0.3b) is actually superfluous (see MsS,
Chapter 5) but we include it in the definition of admissi-
bility for simplicity.

Observe that (0.3b) states that if we write the vy

given in (0:.3a) as’
(0.4) y = C(f)

then C, which is obviously a linear operator fron B into D,
is also bounded. We will be concerned almost exclusively
with the case that D = B = A(E) where A is the space of
almost periodic (AP) functions with range in E. The range
in this notation will generally be omitted and we will simply
write i, etc,, if no confusion might arise: At times we
will also be concerned with the cases B =D =L _ or

B=0D=C_, which we define as the space of bounded continu-

ous functions with range in E. Observe that A and C_



are closed subspaces of L and we have the inclusions
(0.5) Acc_crL,

A(t) will always be an AP or L_ operator function
unless stated otherwise.

Associated with the concept of admissibility we define
the concept of an exponential dichotomy for (0.1). Specifi-
cally (0.1) has an exponential dichotomy if there exist
=1I~P such that if Y({t) is the

2 1
fundamental operator solution to (0.1) (Y(0) = I, see M&S,

projections Pl’ P

Chapter 3), the following estimates hold foxr some o > 0.
a) ﬂY(t)PlY_l(s)“ < ge” *(E78) t<s
(0.6) |

b) nY(t)pzy'l(s)u -a(s-t)

Ke ' s > t.

A

Note that this is not the general definition of an
exponential dichotomy given in M&S (Chapter 8) but it is
equivalent to their definition when E is finite dimensional.
In the case that E is infinite dimensional we will in
general only be concerned with the stable case; that is,

P ;‘I, P, = 0.

1 2
Observe that Py is merely the projection on E, , the
space of initial data of solutions to (0.1) which are bounded
for t € [0,»). To see this note that if y, were in the
range of P2 and if the correéponding solution y(s) wére

pounded for s > 0 then, by setting t = 0 in (0.6b), we

cbtain



(0.7) Yo = v i (s)y(s) = PzY_l(S)y(S)

and yqg = 0 follows from letting s -+ »=. Similarly P, is
just the projection on E_ , the space of initial data which
are bounded for t € (-»,0]. An exponential dichotomy merely
states that E = E_ ® E_ and that the solutions, in addition
to being bounded, decay exponentially.

Now it is a fundamental result of M&S that if A(t) € a
then (A,A) is admissible for (0.2) iff (0.1) has an expon-
ential dichotomy. The preceding statement is also true if
A is replaced everywhere by L_. We prove here the easy part
of the result; namely if we have an exponential dichotomy,

then we have admissibility. If f € L_ define

(0.8) y{t) = C(f) = fG(t,S) f(s) ds
where
G(t,s) = Y(£)P¥ T(s) , £> s
(0.9)
= —Y()B,Y Y(s) s>t .

Cbserve that the estimate

(0.10) Ta(t,s)l < ke Clt7s|

holds by the definition of an exponential dichotomy.
Using (0.10) we see that the integral in {0.8) exists,
that y satisfies (0.2), and that y 1is the unigue L

solution to (0.2} and in fact



(0.11) iyl < Eaa,

S0 that C, defined in (0.8), is a bounded operator from
L,(E} ~ L _(E). To see that C: A+ A we meiely let T

be é common t-almost period for £ and A. Then w(t) = y(t+T)}
- y{t) is the uniqué L solution to (0.2) with

inhomogeneous term

(0.12) [A{t+T)-A(Lt) ]y (t+T) + £(t+T) - £(t) = O(Ei
' We then use (0.11) to obtain

(0.13)ﬁ | ﬂ‘y(t+T) - y(e))l_ = 0f(e)

The proof of the converse is more difficult and can be
found in M&S, Chapter 10. A simplified proof valid only in
the finite dimensional case is given in the Appendix.

In Section 1 we will define almost periodic seguences,
which will be the type of solution we will be searching for.
Section 2 is tﬁe most important of this work. Here, after
discussiﬁg the properties of the strongly stable differenbe
schemes we wiil be using, we wiil introduce a transformation
which will separate out the roots of the scheme inside the
unit circle aﬁd permit us to work with the Euler l-step scheme.
This technigue was originally developed by Engquist [3]
although the author was not aware of his work when the
formulation given in Section 2 was developed. ‘Engquist'é
results will be discussed more thoroughly at'the—end of

Section 3.



In Section 3 we settle the question of admissibility
when the homogeneous system is exponentially stable. Using
an inequality which is an exact discrete analogue to the
Gronwall ineguality, we will show that the homogeneous
difference equation is also exponentially stable. From
there it will be a simple matter to obtain, for any suffi-
ciently small time step k, the existence of an almost
periodic sequence as a solution to the inhomogeneous
difference equation. Furthe;more the sequences converge
uniformly to the unigque AP solution to the ODE with a
uniform error 0(kP) where p is the order of accuracy of
the scheme. We will also show that this solution can in
fact be calculated, i.é. it is stable under roundoff
errors and errors in initial data.

In Sections 4 and 5 we deal with the case that the
homogeneous system has a general exponential dichotomy.

We will show that the corresponding inhomogeneous difference
equation also has an exponential dichotomy. This is only |
of theoretical interest as the solution will no longer be
stable under roundoff errors or errors in initial data.

In Section 6 we will deal with some miscellaneous topics,
especlally the convergence of the mean value of the AP
sequence to the mean value of the AP solution, and also the
weakly nonlinear case. |

In Part II we extend this theory to a simple class of
partial differential equations which can be written as an

evelution equation



(0.14) . y = [B-6ly + £

" where B is an unbounded operator which satisfiés the
conditions of the Hille-Yoshida Theorem and §(t) is an
AP function such that the homogeneous system is exponentially
stable. We can cobtain a unique AP solution to (0.14) by
using the formula which would be valid if B were bounded
and then showing that under mild restrictions on £ the
resultant function does in fact satisfy (0.14).

In Section 8 we introduce a family of bounded operatoxs
B

h which are spatial discretizations to B. We construct

functions Yh which are the unique AP solutions to

(0.15) i’h = [B ~8ly, + £ .

We will give conditions to insure that
(0.16) - I (y-y, )1 = o),

where 3§ is the order of the approximation of B, to B.
In Section.Q we apply the theory of Part I to (0.153) to
obtain an AP sequence y ., Wwhich approximates Yy

We have however the unfortunate restriction

k_

h2m

where HBhﬂ = O(l/hm). A more favorable result

(0.17) = 0(1)

(0.18) —h—m= 0(1)

is obtained in Section 10 when using the Lax-Wendroff scheme. -



In Section 1l we will consider the extension of these
results in the case that the operator B 1is perturbed by
some bounded AP perturbation D(t).

Finally in the Appendix we will give a proof of the
basic ODE theorem that admissibility is equivalent to the
existence of an exponential dichotomy. The proof is wvalid
only in the finite dimensional case but is simpler than the
proof given in M&S and is also simpler than a finite

dimensional proof to be found in Coppel [4].



1. Almost Periodic Segquences

Our first task is to introduce the discrete analogue
of an AP function, Following Corduneanu [5] we define an
almost periodic (AP) sequence a, with range in E as

follows:

a, is AP iff given ¢ > 0 there exists a length L(g)
(a positive integer) such that in any segquence of L

consecutive integers there exists an N such that

(L.1) ‘ ﬂan+N - anﬂ00 < g

where the sup in (1.1) is taken over n. As shown in
Corduneanu {page 45) this is eqguivalent to normality i.e.
given any seguence of integers N, the sequence

b = a will have a uniformly convergent subseguence.

n;i n+Ni

Although the proof given.in Corduneanu is stated for scalar
valued sequences this proof is obviously.valid'if the range
is any Banach space E.

If we define the space L. (E) as the Banach space of
bounded seguences with range in E then the AP sequences in(E)
form a closed subspace of Lg(E). As usual the argument E
will be omitted when no confusion can arise.

We point out that normality can be used, exactly as in
the continuous case, to show that for any finite set of AP
sequences ai,...,a; with range in possibly different spaces

El,...,Er and for‘any € > 0, there is always a l=ngth L(g)

-9



such that in any intervai of length L we can find a common
ce-=almost period.

Finally we note that if £(t) is an AP function then
the segquence fn = f(nk) is an AP sequence for any real k.
The converse is also true as shbwn by Corduneanu (page 47)

but we shall not use that.

- lo._



2.. Properties of the Difference Sheme

We consider linear &-step, strongly stable schemes

‘ described as follows.
A

: ')
= L= HE LY
(2.1) jzo 0¥ pyy = K £ Bi¥nt3 k § ECVR 2 fis!

Here we assume that we are discretizing the ODE

-

(2.2) ¥y = Ay + £(8)

and Y = y(nk), Al

A(nk), fh = f(nk) where k is the
‘time step.

Associated with (2.1) we have the polynomials
2 . 2 .
(2.3) pi(x) = .} ajxj y olx) =] B.x7 .

It is well known (see Déhlquist‘[ﬁllor Heinrici [7]1) that

consistency iﬁplies that x =1 is a simple root of pix) =0
and that
(2.4) p'(l) = o(l) =1

where we have normalized the coefficients so that the common
value in (2.4) is one.

Strong stability of the scheme is achieved by restricting
the size of the other -1 roots of p(x) = 0. Specifically,

if we number these roots X, r .0 =1,...,%, then we require

-11~



that there be a positive number 8 < 1, such that

(2.5) =1, |x, | <8 <1, U= 2,...,%

%1

Finally, we make two further assumptions.

(2.6) X distinct , u 2,008,

{2.7) by #F 0 ’ a= 2,....% .

(2.7) is necessary because to get an AP solution, the
difference equation should be solved backwards and forwards.
This assumption can be removed in the important case that
the homogeneous ODE system is exponenfially stable. Condition
(2.6) can be removed in all cases and is included here only
to simplify the following proofs. The removal of these
conditioné will be discussed in Section 6.

Now in working with a multistep scheme, the standard
procedure is to convert it into a one-step scheme. To do

this we define the space E, = ExEx...xE. {We will usually

2
write vectors in E, in column vector form.) We give E; the
norm inherited from this definition, namely if w € E, and
1
: : b4
2
Y
then
T i
(2.9) Aywl” = max dy “E

1

Here we have explicitly indicated the E norm in (2.9).

-12-



We now consider the discretization of the linear
Yn+2~1

inhomogeneous system (2.2}). If w_ =

n
Yn
(2510) | Woyq =

Here if we define z = kA ,

(2.11) ¢ = E(Zn,...

. o, ~1 N ' _
(a,T $22n+£) (By 1%npg~1"%go1 1) <o+ {0yI-B 2
I 0 s e g .
0 I :
. I
0 .
- "
0 ... 0 e 0
( 1§
IGQI Bﬁzn+£) .E‘ B] fn+3
j=0 :
0 : '
f = :
n 0

" then we get

n+f

)

—l R ’ l
| (BOZH_QOI) |

Observe that C_ € L(ER'EE) and will be just an mixm{

matrix in the case that E is an m—~dimensional space (in which

case it is called the companion matrix). Note also that since

-13-



A is uniformly bounded in t, the implicit term (QRI_BLZ )

L D+
can be inverted, for k sufficiently small, uniformly in n,
We finally point out that if A and f are AP (L) then Cn
and Eh are AP (Lg) and also that C given in (2.11) is a
smooth function tin the Frechet sense) of its 2+1 arguments.

Now with A a constant and z = kA € L(E,E) we consider

for small f(z! the homogeneous difference scheme

{2.12) wn+l = U(z)w.n
Ulz) = (0,I-B.2) (8. .z-a, .I) (a,I-8.2) " 1(8 z-a.1)
(I8 g~12"%g_1 1) .- (0 I=8, 0% %
1 0 i i ] 0
0 SR )
i I 0 i
X . C. 0
0 - - 0 I 0

U(z) is a mapping, defined for small lzli, from L(E,E) into

L(ER,EQ).' Observe the following properties of U(z).

(2.13) (a) U(z) is a smooth {in the Frechet sense) function of =z
(b) U(0) has eigenvalues exactly x with eigenspaces
E, where .
%
u

=

Y

u x r Y C©E
u

e

(c) E =® I Eg-

~1l4-



Now  (a) and (b) should be clear. To see (c), note that the
Spaces E are closed and also that any two have only zero

X
in common. Let w = I% and suppose W has an expansion
kl : =
xR—ly
‘ L 1 .Tu
(2.14) W= ) N

Ty
- o Y1} \.
Then if we define the vector w to be [ t ] we ‘can write
Y ‘
(2.15) w=Vw
_g-1 2-1
v = X . Xg
Xq cee Xy
1 .o 1
i.e.

V is just the Vandermonde

matrix associated with the
distinct numbers Xys...,x,. (2.13c¢) now follows directly
from the ihvertibility of V.

The representations (2.14) and (2.15) enable us to

define an equivalent norm on the space E,. Specifically if

w is expressed as in (2.14) we define

.(2.16)

= max ly I
a u kE

pwi 4

That Kk 1Y is equivalent to | 1%

follows immediately from -
the representation (2.15) and the invertibility of V. Note

that the equivalence of these norms implies the equivalence

of the operator norms they induce on L(Eg,Eg). 0f course:

-15-



this paragraph is superfluous in the case that E is finite
dimensional.

For future use we point out that (2.13b,c) imply

1

that U —(z) exists for small Izl and is smooth in z.

Now define the space gl = @ I E, We have E = E1$E1

u>l
and we note that Ey is canonically isomorphic to E. At times
we will identify E, with E but this should not cause any

. s 1
confusion. With respect to the decomposgition E = Ele E we

see that U(0) is in block diagonal form; symbolically,

D(0) 0
(2.17) u(0) =( ]
0 B(0)
here D(0): El + El and is the identity, while B(0): E1+El
and I1B(0)1"Y < 8. This is the operator norm induced on
L(E,,E )} by the I 1% norm on E, and follows from the fact

that B(0) is just multiplication by ®, on the space E,:

We can now state the fundamental theorem of this section,

Theorem 1. For small Mzl there exists an operator
T(z): L(E,E} ~ L(E ,E,) such that
(a) T(0) = I (Identity on E,)
(b) T(z2), T_l(z) are smooth in 2z
(c) L{z) = T—l(z)U(z)T(z) is in block diagonal form
1

with respect to the decomposition Eg = El & E~.

(d) Writing L(z) symbolically as

D(z) 0
o L 0]
0 B(z)

-16-



then B(z) | = B(0) (from (2.17)) and ﬂB(z)Hq < f whilez

Z=0

D(z) has an expansion

‘ ‘ , ' 2
(2.18) D(z) = I + 2+ o(lzl™)
where El is identified with E.

Theorem 1 is basically trivial and the proof 1nvo1ves'
familiar arguments. First we note that ‘U(2) is smoothly
invertible for small lzl. (The restriction “for‘smatl "zﬂ“t
. will not be stated exp11c1tly in the future } R

Next we observe that (wl = U(z)) ;' exists for w in a

esmall annulus around the circle |w] = 6 and this holdsﬁ;f

uniformly in z. This follows from (2.13b) and the geometrio

series.

Now define the projéctions

1 1

271

(2.19) Plz) = === f (wI-U(z)) ~.aw , oz = I:r.P(zi;low

wi=s
That DP-and Q are projections is a familiar result which

follows from the resolvent identity,

(wy I-0(2)) "H (wyT-0(2) T

(2.20) | L
' 1 -1
calculating P2 by integrating around two slight;y differeut
circles, and interchanging the order of integration. It
follows from the construction that P(z) and Q(z) commute

with U(z) and that they are smooth funotlons of 2.

-17-
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It is clear by applying P(0) to an arbitrary vector
w € E, and using the expansion given in (2.15) that P(0)
is exactly the projection onto El along El and Q(0) is the
projection onto El along El.

Now define
(2.21) T(z) = P(Z)P(0) + Q(z)Q(0) .

Clearly T{0) = I and T(z) is smooth whence T-l(ZJ exists

and is also smooth. Note that this holds in either of the

L

Y or 1| on L(E,,E,). Let

norms |
{(2.22) Liz) = T~l(z}U(z)T(z) .

We claim L is in block diagonal form with respect to
the decomposition E, = E; & El . This follows directly
from the fact that P(z) and Q0(z) commute with U(z). In

fact 1let x € E then

1 H
(2.23) U(z)T(z)x = U{(z2)0(2)x = Q(z)U{z)x = w (say).

Now if y = T 1(2)w and y = y; * yt

and yl = E1 we have

with ¥y = El

(2.24) w=Q(2)U{z)x = T(z)y = Q(Z)yl + P(z)yl

whence

(2.25) P(z)yl = T(z)yl = 0

and so yl = 0 by the invertibility of T(z). Thus L{z)

1 1

maps El > El and a similar'argument shows L(z): E™ =+ E™.

-18-



If we write (using the notation of (2.17)) L(z) as

: bz} 0 D(z): El > E1
0 B(z) B{z): E- - E
then we see that D(z)} and B(z) are smooth in z; D(0) = I

and 1B (0)I"Y < 8. It follows immediately by continuity

that
(2.27) | IB(z)IY < @

for small lzl . Now (2.27) will imply that given ZyreeeaZyg
with bz, small then
N

(2.28) N TT B(zi)ﬂﬁ' <K B
i=1

N

for a constant K independent of the 1z, and N.
It only remains to study the first order structure of .
D(z) in order to obtain (2.18). Expanding D(z) about 'z = 0

we can write

12

(2.29) D(2) = I + C(z) + o(lzl®)

where C is the Frechet derivative of D(z) at z =‘0 and is
a bounded linear map from L(E,E) intb L(El,ﬁl) which we
identify with L(E,E}. It is necessary to show that C is.”
the identity, and as one might expect this will follow very
easily from consistency.

Let A be an arbitrary element in L(E,E) and let z = ka,

A =C{(A). For y € E and identifying Eq with E, we

—19~-~



calculate the following limit

lim D(kA)Py = (I + ka' +0(k2)) %y

k=0
nk= t

(2.30)

for any fixed <t > 0.

As one would expect this limit is e A y because

the difference scheme expressed in (2.30) is consistent

with the ODE y = A'y.
More precisely since

(2.31) ID(ka)l < 1 + kR

for small k, where R is some fixed constant, it follows

that

(2.32) Ipxka)™1 <™, wmk<T, 0<t<rT.

Let X, solve the difference equation

X = D{kAa)x
(2.33) ntd n
Xy = ¥ ;
. n . - A'kn - s
i.e. x = D(kA) y. Now if x =e v then X satisfies

the perturbed difference equation
(2.34) % .. = [D(kA) + 0(x%)1x%
n+l n

where the term O(kz) is uniform for nk < T. Equation (2.34)

follows directly from the fact that x(t) satisfies the ODE

(2.35) X =Ax.

=20~



Letting Wy = Eh - x, We can show easily enough that

In fact from (2.33) and (2.34) we obtain

{(2.37) w =k

n

5 B
.Z =

D(kA)P T o()w, _
J=1 ]
If we use {2.32) to bound the powers of D(kA) and thus "xnﬂ.

we then obtain (2.36) and letting k > 0 we obtain

(2.38) lim D(xa)ly = ey

n-—+oe

nk=t

Recalling the identification of El with E we define the

- Y -
vector y = ! whence y € E;.
Y
Thus (2.38) can be expressed
a't
| e’ Ty
(2.39) lim L(kA)"y = :
‘ k+0 i
nk= t ' eA ty
Now we are going to show that A' = A by calculating this

limit directly from the definition of L(kA). 1In fact since

n[[u

1 it follows that IU(kAa) is uniformly bounded

luoyh™

for nk < T (and of course this is also true if we replace

i E% by 1 1*

). Then writing
(2. 40) Lxa)® ¥y o= T hka) uvka)” Tka) ¥,

and letting k =+ 0 such that nk = t, using the continuity

il

of T(z) and the fact that T(0) = I together with the
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uniform boundedness of the powers U(kA)®, we are left with

At
ey

(2.41) im Lka)® 3 = limuka)ty = :
k+0 k=0 AL
nk =t nk=t ey

the last equality follows from the fact that a consistent
and stable difference scheme is convergent.

Since A was arbitrary, (2.41) together with (2.39) shows
that A = A', which proves that the map C is the identity

and this completes the proof of Theorem 1.
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3. The Exponentially Stable Case

We now assume that the homogeneous system (0.1) is
exponentially stable. Thus, if Y(t) is the fundamental

operator solution to (0.1) (¥Y(0) = I}, then the estimate

-~al{t-g)

(3.1) . “Y(t)Y-l(s)ﬂ < Ke . t > s,

will hold with positive constants K and a. In the Sequél
we will use K as a generic positive constant so it will
appear in contexts other than (3.1).

We wish to prove a similar estimate for the homogeneous

difference equation (see (2.10), (2.11))

(3.2) | W C W

n+l nn

Now Cn is invertible for all n by (2.7}. Then (3.2)

has a fundamental solution W_ (W, = I) which is simply
- .n=1 '
Wn = ‘| Ci ’ n>20 ’
i=0 . : :
(3: 3)
W, = [ | C, r n>20.
: i=-1

It can easily be verified that the unique solution

to (3.2), LA given initial data Wj is simply

C -1
{3.4) w, = WnWj wj

Note that for n > J, anjl is simply
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(3.5) ww'l=l[ci, n>j.

In the stable case we will only use angl for n > j
and we can see that the invertibility of Cy is not required
in this case and assumption (2.7) is therefore not required.
here.

We intend to show that for small k (this will not be
stated explicitly in the future) (3.1) implies

-~k (n-3)

Y <ke . n>i,

{3.6) "WnWj

where K 1s used as a generic constant and can be taken
independently of k, while a; =« + O(k). Thus since o > 0,
can also be taken independent of k for small k.

To attain (3.6) we suppose A(t) 1is Cl. All derivatives

%1

that are assumed will always be required to be AP or L_. This
will not be stated explicitly in the future. The smoothness
condition on A will be removed in Section 6.

Expanding An+j about An we can write (3.2) as

_ 2
(3.7) W = U(kAn)wn + k O(l)wn

n+l

Here the 0(1) term is uniform in n and the operator U is
given by (2.12). We are going to show that perturbations of
the type kzo(l) preserve exponential stability. We thus

consider the unperturbed system

(3.8) W+l T U(kAn)Wn

-2 4=



If we let Gn = T(kAn)vTrn . where the operator T is
introduced from Theorem 1, and note that by the smoothness

of T and A we have T(kA ) =_T(kAn) + kzojl), we see that

n+1

we should consider the difference equation

(3.9) v

n+l = L(kAn)Vh

where the operator L has been studied in Theorem 1.
If Vn denotes the fundamental solution to (3.9) then
since L 1is block diagonal we see that Vn itself is also

block diagonal. If we write Vh in the form

vi 0
(3.10) v, = . v2
n

we can see that the second part, the contribution from the
roots inside the unit circle, causes no difficulty. In fact

for n > j we have

v V. = I I Bka,)
n j i=3 i
(3.11)
2,271 n-j
I Van I <K ® K

where we have used (2.28) and K as a generic constant.
Since 6 is a fixed number less than 1 we see immediately
that (3.6) holds fox Vﬁ where @, can in fact be taken
equal to o for small k.

We must now deal with Vi. Neglecting perturbations

of k20(1) and identifying the space El with E wé
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congider the difference equation

(3.12) X4l = (I + kAn)xn

i.e. we have reduced the problem to fhe study of ﬁhe Euler
l-step scheme. |

We will compare Xn ; the fundamental solution to (3.12),
with Yn (= ¥Y(nk)) where Y is the fundamental solution to
the homogeneous equation (0.1).

1

Let H(t,s) = Y{£)Y¥ ~(s). As a function of t,

H satisfies the equations

H = A(t)H .
(3.13) H=a%(t)H + A(L)H,
H(t,t) = I .

Integrating (3.13) we obtain

1
H{{n+l)k,nk) = I + k f ﬁ(nk+ek,nk) das
(3.14) 0

i1
= I + kA(nk) + k° J J 8 d6 d¢ H(nk + ¢06k, nk) .
00

Now since A is bounded it is a standard result (M&S,

Theorem 3.1 C), that
(3.15) it (t,8)l < XK, (R) for |t-s| <R,

where R is any positive number. This does not require
exponential stability and in fact is an immediate consequence

of Gronwall's inequality. It now follows from the second
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equation in (3.13) that the coefficient of k2 in (3.14) is
bounded uniformly in n and k. This implies that Yn is

the fundamental solution operator to an eguation

_ _ 2
(3.16) Yn+1 = [I+an(k)]Yn = [I+kAn + k 0(1)]3{n

where the O(l)- term is uniform in n. This means that we

can regard the X eguation (3.12) as a perturbation of the

Yn equation. We point out that the reduction we have obtained
does not use exponential étability and so is valid in the case
that (0.1) has a general exponential dichotomy. If we use

the stability, however, we see that Y satisfies fhe

estimate |

l" <K e-ak(n—j)

{3.17) HYan n>j.

We must now prove the proposition that exponential stability

is preserved under k2 perturbations.

Theorem 2. Consider two difference eguations
(3.18) Yool = R(n,k)yn
(3.19) Xorl = R(n,k)xn + kS(n,k)xn

defined for small k. Suppose that (3.18) is exponentially
stable, that is there exists constants K and o« independent

of k such that

(3.20) n§n§;1u < x 7Ok (@73) _—
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where Y  is the fundamental solution to (3.18). We point

out that we do not require R(n,k) to be invertible since

e

we only study the solution Yan for n > j. 1In that case

§n is not invertible and we must use (3.5) in place of §n§gl ,

but we will retain this notation for simplicity.

Under this hypothesis there exists an ¢ such that if

0
for small %k,

(3.21) Ist,k)l < e < g,

where the sup in (3.21) is over n, then (3.19) is exponentially
stable and if in is the fundamental solution to (3.19) (the
dependence on k has been suppressed) the estimate

e-alk(n-j)
1

1

(3.22) "anj <K

where K, can be taken independent of k and o + O(e).

4, =
Before proving this we note that the case where S(n,k)

= 0(k} 1is automatically covered. The more general formula-

tion will be used in Section & and more importantly in Part II.

Note also that it is a discrete analogue to the Gronwall

inequality and the proof is in fact immediately suggested by

the proof of the Gronwall inequality. This theorem is equivalent

to a lemma of Engquist itself based on a theorem of Strang (8],

but the proof given here is simpler than Strang's proof and

much more suggestive of the Gronwall inequality.

To prove Theorem 2 we first note that for n > j we have

I
v o=l o os-l v 31 x %L
(3.23) X Xj= ¥ ¥00 4k Lo YRY5T S, 1 Xy Xy



This analogue of the variation of constants formula can be
verified immediately. Using (3.20) we get

(3.24) 1x x. M
n*j

. n-1 _ _
< K e 0kn=3) oy e o 0k (n-2)

hS !
=7 +3

Here K is the constant of (3.20). If we redefine K as

g % (for small k) and define v . = e okn ﬂﬁniglﬂ we

'~ can write
n-1
(3.25) Vn,j S K+ kKe ng Ve,y = Spa1,§ n > 3
From (3.25) we obtain .
Sn j_sn*l_i
— F F

(3.26) Yn,3 ° kKe Z Sn-1,3

whence

(3.27) s . < (werp)™ I 5., < g, eSKKWTI)

n.,3 - j»3 — 71
 where Ky is defined so that Sj j j_Kl independent of k
r

and j (from (3.25) specialized to n = j+1 and the fact that

v, . = 1}).

J_rj )

Inequality'(3.27) together with (3.25) and the defini-
tion of Vn,j yields (3.22) immediately and thus completes
- the proof of Theorem 2.

Returning to our specific case, it should be cleér that

after several applications of Theorem 2 we can prove

exponential stability for Gn defined as T(kAn)Gh {(see (3.8)
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and the following paragraph). Since in terms of fundamental
solution operators we have

- -1

-1 - =1
3.2 WW., = V. V. T{kA.
{ 8) n¥4 T ~{(k&An) nvJ (k J)

we obtain exponential stability for (3.8) and another applica-
tion of Theorem 2 yields exponential stability for the full
homogeneous system (3.2). It is a simple matter to go from
exponential stability to admissibility for the inhomogeneous

difference equation

(3.29) w = ann + kgn

n+l

We first define admissibility in the obvious way.
The pair (Lg,Lg) will be admissible for (3.29), for small

n

k, iff for any sequence In in L {3.29) has a unique solu-

tion Wo in Lﬁ and this assignment is a bounded mapping,

i.e. there exists a K (independent of k} such that
{3.30) HwnllOo < KIIgnIIOo .

An entirely analogous definition holds for the admissibility
of the pair (in,in). As in the ODE case we will show (LE,LE)
is admissible and then show that the solution is AP if the
coefficients are.

To show (L:,L:) admissibility we merely write the solution

th -1
(3.31) w =k } WU gy g

j:—-oo

Exponential stability implies the convergence of this series,
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which can be immediately verified to be a solution of (3.29).

n \ .
To show Wy € L we estimate, using (3.6)

Ik s g,k —E— < g i R

' @«
(3.32) lwi_<lgl Kk 7 e
B n §=0 S l-e

(using x/(l-e %) > 1 as x + 0) and this yields (3.30) after
a redefinition of K. . |

To show uniqueness is trivial, if W were a bounded
solution to the homogeneous equation (3.2) we would have

for n > j,

_ -1
(3.33) ) w, = WnWj wj
andg . W, = 0 follows immediately upon letting j - -«.
Tt remains to show that (ﬂn,ﬁn) is admissible. In
fact if N 1is a common ec-almost period for Cn and 9, -
we woulﬁ—have Woin~ Yn to be the unique L solution

to an inhomogeneous equation with inhomogeneous term

- Cn]Wn+N + gn+N - gn

1
(3.34) & o

and for fixed k > 0 the almost periodicity of W is a

consequence of (3.30).

We can remove the factor 1l/k in the denominator by using

- the expression (2.11) for C, +

(3.35) Cn = C(kAn,...,kAn+k) '

where C 1is a smooth function of its arguments. Expanding

cC C using {3.35) we see that if N is a common e-almost

n+N n
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period for An and fn' then N will be an O(e)-almost period
of W with the bound in the 0{(e) term independent of k.
Note that these two paragraphs follow only from (LE,LE)
admissibility of (3.29) and do not depend on the stability
of (0.1).

The convergence of W, to the solution Yo also follows

very easily. If y is the unigue AP solution to {0.2) we

have
(3. 36) Z ujyn+j’k Z Bjyn+j
J 3
1
= k[ } ajj j (y (nk+6kj) - y(nk)) ae
J 0
- § 8, ly(nk+ki) - y(mk)1l = k glknk) .
3

(The summation is from 0 to % in the above.) Here g(k,t) is

AP in t for each k and
(3.37) ilg(k,t)iioo = o((l) , ' k>0 ;

(3.37) follows from the uniform continuity of AP functions on

the whole real axis.

( Yn+e-1
H

~

Now if ﬁn = ] then (3.36) implies that Qn is the

unigue AP solution % to the same equation as W, except for

an error,
g(kl’nk)
0

{3.38) k

|=]
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and (3.37) together with (3.30) yield
(3.39) bw -w Il = o(1) , k>0 .

We can obtain finer convergence results by imposing some
smoothness conditions on A(t) and £(t). In fact if the scheme
has order of accuracy p, and A and f have p+l derivatives,
then y also has p+l derivatives. It is shown in Henrici

(p. 247) that

p+l

- . p+l
(3.40) | § oY y7K g sjyn+jﬁ < k aly®™ 1,

where the constant G depends only on the scheme. (3.40)

together with (3.30) yield
R i _ — - p
(3.41) | w W b= 0(kT) .

We point out that these convéfgence arguments arehQalid.wheﬁ—
ever we have admissibility and do not require staebility.
Before leaving the stable case we would like to discuss
problems relating to the computability of the solution wn.
Consider first errors in initial data. Suppose we
solve the exact difference eguation (3.29) but use as initial
data w;{k) = wotk) + e(k) where wo(k) is the exact initial
data for the AP sequence solution w and e(ki is bounded for

small k, i.e. le(x)l

| A

eo. Now the solution w; . which we
solve for, will be
(3.42} | W= W + Wne(k) ;.

and we have
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® -
(3.43) I -w 1 = o(e™®™) n >0

Now in general we cannot expect e(k) + 0 as k + 0.
This would certainly occur if we could obtain initial data
consistent with the initial data of the solution y to the ODE.
However 'this solution is known only by an improper integral
involving not only the given forcing function f(s) but also
the fundamental solution Y(t) to the homogeneous system
which we could not expect to know explicitly unless A were
a constant. Thus the most we can assert is that, using fixed
initial data (say w;(k) = 0), i1f we integrate over a sufficiently
long interval we will get the solution w, up to some exponen-—
tially decaying error.

Now let us consider round-off error. If we could

postulate that we solved a perturbed equation

* %

k% ~
(3.44) Worl T ann + kfn + O(k

r+l) ' n>0, r>0,

where the error is wniform in n - then we could relate this

*
solution to W by

* x * n -1 r
(3.45) w =w_+k ] WW.” 0(k") , n>=0,
, n 551 n j

and we can estimate the error simply,

-akr
e

wnw;l o(k¥)l < kTkk = ox%) .

n
(3.46) Ik J
j=1 r=0

J

Let us further examine the validity of (3.44). If we
include rounding errors in forming the companion matrix {or

operator)}, together with the error of taking only a finite
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expansion of the term (a,T - szAn+£)

case (see (2.11)), then we could assume that the linear

in the implicit
part of (3.44) would be replaced by

(3.47) e w0 .
n n

+ i L
If we also assume an error O(k* 1ﬂwnﬂ) in forming the

product ann we see we should postulate a system

b

k% _ r+l r+1 k% -
(3.48)Wn+1 = ann + kgn + Q(k ) + O(k ‘"wn I}

and in order to justify (3.44) we must show that the solution

to (3.48) will be bounded for n > 0.
We can write.this solution as

*k *k IZI _j_
wo=Wwe otk bW W gL
j=1
{3.49)

n '
_] r r * %
. . " .
+ k[j} W Wj (O(k™) + ok W] lﬂ)]

Now if we use the fact that

[+]

(3.50) k ¥ e 9T _ o1
: r=0
. . * % ‘
and define h = max lw. | we can estimate h by
j=0,...,n ]
r _
(3.51) h = o(1) + k= h_ 0(1)

where the 0(l) terms are independent of n. Tﬁis implies,.

kk :
for small k, the boundedness of Hwn I and so justifies (3.44).

The techniques used in Section 2 of block diagonaliiating

the companion matrix were first developed by Engquist
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although I was not aware of hié work when my formulation was
developed.

Engquist's procedure may appear to be more complicated
than the procedure presented here, but this is because he
proves a more geheral result; namely that the companion
matrix can be block diagonalized to within an error of
arbitrary order {(say O(kpl)). (He also does not restrict
himself to strongly stable schemes, but this imposes stability
requirements on several additional homogeneous systemns. )

If one were to consider his procedure restricted to a block
diagonalization. up to O(k2) then, while the two formulations
differ in the lines of approach, they are equally simple.

Engquist also shows that the upper block will agree
with the Taylor series expansion of (0.1), up to terms of
order p, if p « Py ig the accuracy of the scheme. The
proof of the first order structure of the upper block (the
term D(z) in Section 2) is, I believe, somewhat simpler
than his proof restricted to the fir;t order term.

I would like to point out that in the case we are
considering (an exponentially stable ODE and a strongly stable
scheme) the extra fineness of the block diagonalization being
carried to order p+l will only give the advantage of the
homogeneous system having a stability exponent ~a+0 (kP)
instead of -a+0(k). 1In particular in Engguist's study of
the uniform convergence (for t > 0) of the solutions of the

homogeneous equation to the solution to the ODE (see his
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Theorem 3, p. 24-27 and note that what he uses as o 1is

what we call -a) one would still obtain uniform convergence
Of'O(kp) (neglecting round-off and errors in initial data) ,
however the decaﬁ exponent would be -o+0(k) instead of |

~a+0 (kP .
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4. Admissibility in the Case of a

General Exponential Dichotomy

Here we are concerned with admissibility properties
in the case that the homogeneous equation (0.1) has a
general exponential dichotoﬁy as described by (0.6) with
P, # 0. The results will be valid in the infinite dimen-
sional case, although in this case one must bear in mind
that the situation described by equations (0.6) is not
the most general form of an exponential dichotomy.

First of all consider arbitrary homogeneous and

inhomogeneous difference egquations

(4.1) w = C {klw,

n+1

(4.2) w = Cn(k)wn + kgn .

n+l

Here Cn is defined for k € (O,ko] and is AP in n for
fixed k, and is now assumed invertible so that a fundamental
solution operator W, o+ as described by (3.3), exists and
is invertible for all n.

Associated with (4.2) we have variation of constants

formulas in both the forward and backward directions,

n
-1
(a) Wn = WnWO + k Jil anj gj_l ’ n > 0
(4.5)
‘Z’ -1
(b) w=Ww, - k WW."g._1r n <0
n no j=n+1 nj ?3j-1

as can be easily verified.
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Now we will define an exponential dichotomy for (4.1)
as follows. Suppose there exist projections fl(k), ﬁz{k)

=TI - ﬁl(k), such that the estimates

1w Bow o ok (n=3)

1735 K

(4.6)

5 =1 -ak (j-n .
WP ST < Ke ok (3-n} j>n,

hold with K and o independent of k. The only difference
between this and the ODE case is that the projections,
may depend on k.

. n n . )
. If we have an exponential dichotomy then (L_,L_) is

admissible for (4.2). In fact the unique bounded solution
.w_ 1is
n
(4.7) w (k) =k | Gig
) n L e J7i-1
j==
where
n _ s -1
Gj = WnPle v n>j
(4.8) o
I | : h
= WP W j > n+l

Equation (4.7) is of course suggested by the ODE case and
is easily verified using (4.6). The admissibility bound
{(3.30) can be derived exactly as in the stable case as can
(in,in) admissibility. |
' : n _n ~n ~n e
We next observe that (L_,L ) (or (A",A")) admissibility
is preserved under perturbations of the linear term. In fact

if we had a system
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(4.9) W

el = Cn(k)wn + kSn(k)wn + kgn

where, for small k,

(4.10) Ilsn(k)lloo < €g
and €9 igs some number to be determined, then the unique LE
solution can be found by defining LA = 0 and WoLitl to be

the unigque Lz solution to

C

(4.11) + kSnw . + kg

, = W,
wn+l;1+l nn,i+l n,L n

(for simplicity the dependence of <, and Sn on k has been
suppressed). If €oKq <'1l, where K4 is the admissibility
bound for (4.2), the contracting mapping principle establishes
(Li,Lﬂ) admissibility with admissibility bound

K

1
(4.12) K, = 7"
2 (1 eOKl)

Of course we will get AP solutions if Dn+kSn and g, are AP,
Now these two principles certainly settle the question
of admissibility when the homogeneous system has a general
exponential dichotomy. Referring to the reduction obtained
in Section 3 we see that after a nonsingular change of
dependent variable, v, = T(kAn)wn r Yy satisfies the

equation (see (3.8) ff.);

(4.13) v =

I+b_(k) O
n
n+l (

v+ k2 o(L)v. + kg .
0 B n n n
n

By the boundedness of T and T—l,

-~

Here g, = T(kAn+l)gn'
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admissibility for (4.13) is equivalent to admissibility
" for (4.2). But (4.13) expresses the homogeneous term as

a perturbation of the system

| I+D_ 0
(4.14) X = ( ]X
| n+1l 0 B n
n
with fundamental solution
Y -0
Xn = ( R | ] . n >0,
0 I | Bi !
i=1
(4.15)
Y 0
-—n .
X__ = —n"l'l - r n > 0 ’
Ci=0

arid this has an exponential dichotomy with projectidns
independent of k and in fact (after identifyihg'El with E} . .
.

Pl =‘Pl ] P(OI'..
(4.16) S '
Pz = P2 o ‘ | ‘ P

Here Pl and P2

are defined in (0.6) while P(0) 1is the:
projection onto EX along E, (see (2.19) ££). |

We thus obtain admissibility in this case and we point

out that the convergence proofs given in Section 3 did not -

require stability and remain valid here.
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5. Existence of an Exponential Dichotomy for

the Homogeneous Linear Equation

We will prove here that admissibility for the inhomo-

geneous difference equation

(5.1) Worp = Gt kg

implies an exponential dichotomy for the homogeneous egua-

tion

(5.2) Worl ann

The proof is very similar to a proof of the analogous property
for the ODE case given in the Appendix. It is a strictly
finite dimensional proof and it may then be simpler to think
in terms of matrices rather than linear operators. We can
then regard T(z) as a similarity transformation which follows
an initial transformation putting U{(0) into block diagonal

| form. The matrix L(2) is strictly in block diagonal form

and it is no longer necessary for us to continually make the

qualification "identifying E, with E."

If we let v, = T(kA.n)wn , (5.1) is transformed into (see
(4.13))
I+an 0 2
(5.3) Vil T [ 6 5 ]Vn + k 0(1)vn + kgn .

n

(For simplicity we will write the inhomogeneous term in (5.13)

as g, rather than én.)
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If we call the leading matrix in (5.3) Rn(k),‘then the

unperturbed linear system

{5.4) X =R X

has an exponential dichotomy with projections Py and Py s
independent of k (see (4.15)‘and (4.16)), and we must exhibitﬁ

an exponential dichotomy for the homogeneous version of (5.3)..

2
(5.5) Vol - ann + k 0(1)_vn .

By admissibility (5.5) can have no Lg sOlutibn} Let
s, (k) and é_(k) be the subspaces of initial data'whigh give
rise to solutions bounded for positive and negativé n réspec—_
“tively. We have 5 N S_ = {0} (suppresssing the k depépdgncé),
If we let S‘ be any complementary space we have i
(5.6) - E, =S, 65 @85

with associated projections

(5.7} - ‘ I =P, + P, +P

I

Our first task is to show S = {0} i.e. Py = 0.
Define 'iz to be the submanifold of LS of seguences
with only finitely many nonzero components. Let In e ﬁz‘

and let Vi be the corresponding unigue Lg solution to.

(5.3). Then using {4.5a) we see that for 1arge‘positive n-
we have
(5.8) v. =V [vya + k ] vot ]

* n n 0 ]=l j gj'-l
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and since . is bounded the vector in the brackets lies
in 8 i.e.
(a) P,v, = - k E P, VL g
270 L2 Y5 95

(5.9)

8

(b) Pvy = - k IRy Vg

Similarly looking at Vo for n » -» and using (4.5b) we

obtain
‘ 0 -1
(a) P,vy = k j=§m Py V5T 94-1
(5.10)
0 -1
®) P =k L P3 ¥yl 93
Now if we simply set
9o = V1F3%
{(5.11)
g; = 0 , 1 # 0,

where 2z 1is an arbitrary vector in E, we see immediately

that P, = 0. We can also see that for any given 9, € iz

the unique I} solution v_ is given by
<o n

oo

' _ n
(5.12) v, = k .z“ Gj gjwl
j__ oc
where G? is given by (see (4.8))
n _ -1 .
Gj = Vn Pl Vj ’ n>7j
{5.13)
_ -1 .
AR P S I
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It is of course G? which we wish to prove is exponentially
damped.

Let a? be the Green's function associated with (5.4).

We know
(5.14) né?n < K o0k [n=3]
Now define Hg = G? - E? . If gj € ig and v the corres-

==/

ponding solution to (5.3}, while x is the L1_ solution

to the inhomogeﬁeous version of (5.4),

(5.15) ‘ X

n+1 = Rnxn + kgn .
Then wo= vy TR, is the unigue bounded solution to
(5.16) u . =Ru +k°o0(l) v
: : n+l nn n "
We thus have
T n 2 7 =n
5.17 = k H. g. .=k : G. 0(1) w. .
( ) Un ._z_m j‘g:]'-l .Z_m ] (1) j-1
J ]
If we fix i and let g;_1 = Zr gj =0 for j # i-1 where

'z is an arbitrary vector in Ez , we then obtain, using (5.14)

and the admissibility bound for (5.3),

for all n, i

(5.18) HH?H <Ky

where Kl is some constant independent of k. (The restric-
tion "for small k" is always understood.) The use of f5i14)

then implies the boundedness of G? i.e.
|

(5.19) '"Gj < K, ,

-2

where K, is independent of k.
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We will now show that

(5.20) HPl(k) - Pl" = O(k) .

Observe that 51 is independent of k. To obtain (5.20) we
= 0 . _ .

note that Pl P, = Ho. If we define 9i-1 T Z, gj = 0

{j # i) where =z 1is an arbitrary vector we then have

from {(5.12)

= i1 = j-1

Substituting into (5.17) we obtain

(5.22) u

kHYz = k3[ I & ow Gj_l]z
j=—oo

Now using (5.19) and (5.14) we see the sum in brackets in

(5.22) is 0(1/k) whence we conclude that
(5.23) 151 = 0(k)

and setting n = i = 0 we obtain (5.20).

Note that this proves that the ranks of the stable and
unstable manifolds are unchanged for small k.

We can now show quite easily that (5.19) can be replaced
by an exponential decay factor.

For a certain small positive € consider new systems

with the linear part of (5.3) and (5.4} multiplied by e_Ek i.e.

(5.24) erH_l = e_Ek[Rn + k2 O(l)]vﬁ
£ _ ~ek €
(5.25) Xn+l = e Rn xn .



Now by Section 4 (see (4.9) ff.) the inhomogeneous Versioﬁs
of (5.24) and (5.25) will both have (LZ,LZ) admiséible, if

€ is small enough. But the new fundamental solutions are

(5.26) _ vE = o ERK

n . n
(5.27) XE _ e-enk <
n n

énd clearly (5.25) will have an exponential dichotomy with-*

projections P, and §2 if ¢ is small enough.
Now if Pl(k) and Pz(k) are the cOrreSpdnding'stabie-

and unstable projections for (5.24) while_GI;_g is the

Green's function for (5.24), the same analysis fhafrled to -

(5.19) will yield for some constant Kj

(5.28) BT
In particular if Jj > n+l, (5.28) reduces to .

e -1 ek (§-m)
(5.29) v, P, Vj _ -

Lo
<Kye

and one part of the definition of ah_exponential dichotomy

. for (5.5) will have been shown if we can show Pi = Pl”,
. . . o . b
Pg = P, . But this is a simple consequence of (5.20). In

fact if S , SC

for (5.24) then (5.26) yields
(a) ‘s, € S

{5.30)
() s C s

But (5.20) shows that the ranks of Pi and P, are egual
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{being equal to the rank of 51) and similarly for PS and Py

This shows that the inclusions in (5.30) are equalities and

that

(a) P, = P,
(5.31) ¥

= P

N M

{b) P 5

Thus one part of the requirements of an exponential dichotomy
for (5.5) has been shown and the other part will follow on
replacing -& by +e¢.

Lastly we point ouf that an exponential dichotomy for (5.5)
implies one for (5.1) since in terms of fundamental solutions

we have

_ ol
(5.32) Wn =T (kAn)Vn T(kAo)

whence the projections Pl(k), Pé(k) for (5.2) are related to

P. and P, by a similarity transformation

1 2

(a)  Py(k) = T T(kBAg)P (K)T (KAy)
(5.33)

' -1
{b) PE(k) = T (kAO)PZ(k)T(kAO) .
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6. Miscellaneous Results

This section is concerned with certain generalizations
of the £he0ry developed in the preceding section. We first
remove certain restrictions which had been imposed previously
in order to make the exposition clearer. In Section 6A we

1 while in Section 6B

will remove the restriction that A be C
we remove the restrictions (2.6) and (2.7) on the roots of
the polynomial p(x) = 0 which lie inside the unit circle.
We then consider certain trivial extensions of the
theory. In Section 6C we remark on the general L (non-AP)
case. In Section 6D we consider the convergence of the
mean value of our sequence solution to the mean value of

the solution of the ODE and finally in Section 6E we

consider the weakly nonlinear case.
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6A. Removal of the Differentiability Condition on A

First consider the case when the homogeneous equation
(6.1) y = Ay

igs exponentially .stable; i.e.

(6.2) vy Yl < g e TS £,

where Y(t) is the fundamental solution to (6.1). We assume
the A is AP but is not Cl. Now Theorem 2 does not require
a perturbation O(k2) but is certainly valid for a perturbation
k o(l) {(k » 0}). This leads us to expect that the requirement
that A be Cl can be replaced by the uniform continuity of AP
functions on the whole real axis. This is indeed the case
as one can verify with little difficulty.

In this subsection, we will merely trace through the
proofs in Section 3 and indicate what changes must be made
if A is not Cl.

Discretizing (6.l) we obtain the homogeneous difference

eguation
(6.3) Yhel T ann
where Cn is given in (2.11). Using the uniform continuity of

A we see that (3.7) can be replaced by

(6.4) W = Uk An)wn + k o(l)wn

n+l

where the term o(l) is uniform in n (this will not be stated
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" explicitly in the future). If we also use the uniform

continuity of A to obtain

(6.5) T(k A ) = T(k Ah) + k of(l)

n+l
we see that Theorem 2 will yield exponential stability for

(6.3) provided we can show exponential stability for the

system

v

I+kA 0
n
( :

(6.6) v =
n+l 0 B
n

The lower block causes no difficulty and we are left with

the system

(6.7) Xop] = [I + k An]xn.

‘Finally we can show that (6.7) is exponentially stable by
using Theorem 2 to compare the fundamental solution X with
Yn (= Y(nk)). This reguires some meodification, as £he proof'
leading to (3.16) used the differentiability of a (see
(3.13) ff).

Following the notation of Section 3, we define

l(s). We can then write (compare with (3.14))

| 1
(6.8) H((n+l)k, nk) = I + kH{nk,nk) + k f a6 [H (nk+0k ,nk)
0

H{t,s) = Y ()Y

~ H(nk,nk) ]

=TI + kAn+ k de [A(nk+ek)-An] H(nk+6k,nk)

O

1 .
+ k f dg An[H(nk+ek,nk) - Hi{nk,nk}]
0
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Finally we see that if we use (6.2) together with the
uniform continuity of A on the whole real axis and the

equation

(6.9) : H{t,s) = A(t)H({t)
then (6.8) can be rewritten as

(6.10) Yn+l = [T + kAn + k o(l1)] Yn

and Theorem 2 is immediately applicable.

We thus have exponential stability for (6.3) and hence
(in,in) admissibility for the inhomogeneous version of (6.3).
Finally we point out that the results of Section 4,
regarding admissibility in the case that (6.1) has a general

exponential dichotomy is equally valid if A is not Cl, as
the contracting mapping principle (see (4.9) f£f) would
certainly be applicable if the perturbation is k o(l}. The
results in Section 5, however, use crucially the differenti-
ability of A (in the argument involving the deduction of
(5.18) from (5.17)) and it has not been possible to extend

this result when A is not Cl.
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6B. Removal of Restrictions on the Roots of p(x) =0

In Section 2 we prescribed two conditions on the roots

of p(x) = 0 which lie inside the unit circle; namely
(6.11) X, distinct , U= 2,...,%,
{6.12) X, 70 ' u=2, . ..,%.

(Recall that x; = 1 and [x | <8 <1 for u>1). Wewill
now remove these restrictions.

" It should be clear by noﬁ "that in the exponentialiy
stable case (6.12) is unnecessary. In fact the fundamental
solution to the homogeneous eqguation is used only for n > j,
aﬁd the equation (3.5) shows ‘that the invertibility of the
linear term C; is not required for n > j. Of course the ‘
notation angl is no longef accurate, but except for this
detail the results of Sections 2 and 3 are valid without
assuming {6.12).

We deal next with the restriction (6.11). (Note that
the root x; = 1 is always simple.) The removal of (6.11)

in the finite dimensional case is trivial. In fact suppose

the root X has multiplicity g > 1; i.e.
1 - = d-1 =
(6.13) P (xr) = ... =P (xr) = 0
o
prix,.) #0

I+ is shown in Henrici (p. 214) that the effect of (6.13)

is that the eigenvalue x_. of U{(0) (see (2.12)) will now have
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nontrivial Jordan blocks. Thus U(0) can still be put in
block diagonal form (see (2.17))

I 0
(6.14) u(o) = ( ]

0 B(0)
where B({0) is no longer diagonalizable, but has all of its
eigenvalues bounded by 6 in the norm. Now since B(0) can
be put in Jordan normal form with € instead of 1 on the
superdiagonal, for any € > 0, we can certainly choose

a matrix norm such that
(6.15) B (O}t < B

Since all norms are equivalent on a finite dimensional space,
the proof of Theorem 1 can now proceed exactly as in Section 2.

The case when E is infinite dimensional can be handled
in exactly the same manner; however since we can no longer
appeal to the theorems of linear algebra, we will have to
carry out the proof in more detail.

Tt is shown in Henrici (p. 214), that in the scalar case
a basis for the generalized eigenspace Er corresponding to

the eigenvalue X, is {er,j}j=l,--.,q where

xﬂ—l
r

M1
{

(6.186) r,1

1

-5 4=



i—-1 ,
[} et 0D
r=1
f:%'(n—r)x(n-(j—l))
r=1
errj - . ! J > 1.
-1
i ] (j - r¥x
r=1
]
L o r
One can verify easily that in fact
(a} U(0) er,l = Xrer,l
(6.17)
(b) U(O)-er’j =% e 4 + ®r,5-1 * j > 1.
Also since the wvectors ;r 3 form a new basis the £ x &
I

matrix with columns e is nonsingular. Now in order

r,j
to have £ instead of 1 on the superdiagonal, we replace‘ér 5
L4
by e_ . where
r
. _ -1 =
(6.18) er,j £ | er,j

(see Bellman [9], p. 198). Here € > (0 is to be specified.
The matrix with columns e, ;5 is still nonsingular but

(6.17b) will now be replaced by

(6.19) U (0) €r. 5 = ¥r Sr, 4 + € ey, i-1"
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Now the extension of this to infinite dimensional sPdce
is very simple and follows clnsely the procedure of Section 2.

For any vector y € E define the vector e. j(y) 5 Eg by
F

r=1
(6.20) e, .(y) = SERE
r] : : [ (§+1-r)x vy
r=1
0
L 0

Equation {(6.12) clearly generalizes to

U(0) er'j(y) X er,j(y) + £ er,j_l(y) e 3> 1

(6.21)

U (o) er’l(y) = X, er,l(y) .

We now define the space E_ j = {w € E, such that
'}

w=-¢e_ .(y) for some y € E}. Clearly the space E_ . is
r'J rl‘]

closed for all r and j. Furthermore we have

(6.22) E,=® ) E

L £, r,j

This follows by the same argument as that given in Section 2

X ,
i
(see (2.14) ff). 1In fact if w = [ . ] is a vector in E,
X
g
and we had an expansion
Xy ;
(6.23) . = e (y )
kg r,j Tl TEed

then the {yr j} would be related to the {xi} by multiplication
' .
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by a nonsingular £ x £ matrix and this establishes (6.22).

It also follows from this that if we define a new norm on

E, by lwl® = max ﬂyr an then Iwl" is equivalent to Hwﬂg
r,J '
(m?x ﬂxiHE).
Now if El is defined as El,l {(the root Xy
while El is defined as ® |} E_ . , then, exactly as
' , r>1l,3 Leld )
in Section 2, we see that U(0) is in block diagonal form

with respect to the decomposition E = El ] El, and we can

is simple)

write (see (2.17))

: p(oy -0
(6.24) u(0) = ( : ]
‘ 0 B(0)

where D(0): E. = E; and is the identity, while B(O); El -+ El

1 1

and for ¢ sufficiently small we have from (6.19)
(6.25) IB(o)IY < @

The proof of Theorem 1 can now be carried out exactly
as in Section 2 if we make the final observation that the
spectrum of U(0) is exactly {xu}. This should be obvious

and follows from the fact that on each "generalized eigen~

§pace| E, = 6_% B, 4 ¢ U(0) - AT (for A ¢ {x_ }) acts as
' the matrix
xr-l £ o . . . 0
0 ) ) .
(6.26) . . ’ ’ ;
. . €
0 . . . 0 x -2
r

and the inverse is ohtained merely by inverting this matrix.
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6C. Extensicn to the L  Case

Here we would like to make the simple observation that
the difference equation theory, like the ODE theory, is
essentially an L_ theory which produces AP solutions when
the coefficients are AP.

In fact, if we now agree that derivatives are to be
understood as L_ instead of AP, the theory developed in
Sections 3, 4 and 5 is entirely valid in the L _ case, with
only one unimportant exception. The single exception is
the proof given in (3.36) ff of the convergence of the Li

_ [ y’1'1+5L-l

solution W to the vector w . in the case

¥n
that the coefficients are not smooth. In fact if we

n

refer to (3.36) and (3.37) we see that (3.37) need not
be valid because the function § which is C_ (we take A and
f continuous) need not be uniformly continuous on the
whole real axis. In this case we have not been able to show

that w, ~ W uniformly for all n but only uniformly for nk

n
lying in compact interwvals.

To see this let us write wn(k), ﬁn(k) to indicate
explicitly the dependence on k. Now if the initial data

for wn(k) is consistent, that is

(6.27) wo(k) R E

7]
for some vector y, € E, then it is well known (see

Henrici, p. 244) that wn(k) must converge uniformly on
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compact subsets, to some solution to the equation
(6.28) y = A(t)y + £
But since every solution to (6.28) but one is unbounded, this
limiting solution can only be the unique L_ solution y(t). Thus
we must show (6.27) and the proof of this will in fact show
that the vector Y1 in (6.27) is y(0).

We assume at least that A is Cl (with bounded derivative)
so that the results of Section 5 are applicable. We can ‘then
write

o

| = 0 .
(6.29) wg ~Wo =k | 63 gtk (3-1)k)

j:—,oo
where g is given in (3.37), and G? satisfies the estimate

?alk|n—j|

(6.30) . HG?H <K, e .

1
Observe that g(k,t) - 0 uniformly for t in compact intervals. Let

T be unspecified for the moment and rewrite the sum in (6.29) as

. ' 0 '
(6.31) wo=wy=k ] cOg(k, 5-1)Kk)+k T Goalk, (3-1)k) .
| k| < J |3k|>T
The first term = 0 because g(k,t) » 0 uniformly on the compact
-0, T
interval {-T,T]. The second term is Ofe ) as we can easily

see from (6.30). Thus by first choosing T sufficiently large
to make the second term small, and then choosing k small enough
to make the first term small we see that "wo—ﬁoﬂ + 0 (k ~ 0) and

this establishes the convergence of w_ to Gn uniformly on

n

compact intervals.
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6D. Mean Value Properties

Let a, € A". 1t is shown in Corduneanu (p. 48) that“

the limit

' _ 1 n+N-1
(6.32) lim & ] ay = m(a )

N->co j=n
exists and that this limit is uniform and independeht of n,
which we henceforth set equal to zero. This is of course
the exact analcogy to the mean value of an AP function
T
(6.33) lim = f £(t) dt = m(f)

T—)-c.oTO

Now if LA is our AP seguence solution, we would like to

study the behavior of m(wn) as k - 0. Define ﬁn as

yn+£—l

%1
if

(6.34)

-

¥n

where y is the AP solution to the ODE

(6.35) y = Ay + £
Clearly
m(yn)
(6.36) m{w ) = :
m(yn)

Now since (see (3.39))

(6.37) IIWn—wnIIoo = o(l)
k-1
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we must compare m(yn) with m{y). We first claim for any

AP function g we will have

(6.38) m(g,) > m(g)

k~+0

where Iy = é(nk). Thig is obvious because (6.38) holds if
g is a trigonometric polynomial and for. arbitrary g, we
simply approximate by a sequence of trigonometric
polynomials.

Now (6.38), together with (6.37) and (6.34), certainly

yields
m(y)

(6.39) m(wn) 50 >

m(y)
We now concern ourselves with the rates of convergence,
: s s +
assuming smooth coefficients.. If A and f are cP 1 (so that

y is) we can replace (6.37) by (see (3.41))
- I = P
(6.40) lw =@ I, = 0(P)

wheré p is the order of accuracy of the scheme. It
therefore followslthat |
m(y, )
(6.41) m(w ) = : + 0(kP)
m(y,)

and it is only necessary to study the convergence of'm(yn)

- ' : . +
to m(y). In fact for any AP function y e ¢t 1 we have
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m(y) + okt

(6.42) m(y,)

Equation (6.42} is an almost periodic analogue of a
theorem of Isaacson and Keller [10] for periodic functions
(p. 340) and in fact the proof is very similar, and is a
simple consequence of Taylor's theorem. Letting tn = nk

and s € [0,1] we can write

1 r +
(6.43) y(tp+sk) = y_ + (sklyy +...+ iﬁ%%— yo + o™h

where the remainder is uniform in t since yr+l is AP.
Integrating (6.43) from s = 0 to s = 1 we obtain

tn+l

(6.44) f y(t) dt

t
n

1
k f y(tn + sk) ds
0

k r+1

r
1 k o
k[yn+5yn+..- (r+l)! Yn + O(k )].

H

If we sum (6.44) fromn = 0 to N, divide by Nk and let N » =
we obtain

r
(6-45) Mm(y) = m(y_) + £ m(yi) o TE%ITT m(yl) + okt

Now if r = 0, i.e. vy |is Cl the terms involving m(yi)

through m(yg) are missing and we obtain (6.42). For r > 0
we assume (6.42) holds for j = 0, ..., r-1. We can then

write, as yl is Cr ‘

(6. 46) 0 = ayh) = myd) + oxh)
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and similar expressions for El(yi) for i = 2,...,r since
yi € C(r—i)H‘ (we have used the obvious fact that the mean
"value of a derivative is zero), to obtain (6.42). If wel now
apply this to (6.41) we obtain

( mly)
(6.47) mw ) = | 1 |+ okP) .

m(y)
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6E. Weakly Nonlinear Equations

Consider the equations

(6.48) Yy = Ay
(6.49) v = Ay + £(t)
(6.50) 1} = Ay + h(t,y)

If any pair of function spaces (B,D) is admissible for
(6.49) the contracting mepping principle provides a technique
to obtain D-solutions to (6.50} under certain conditions on
the nonlinear term h(t,y), the most important being that
h has a small Lipschitz constant ({see Hartman [11],
Chapter 12).

The case of (i,ﬂ} admissibility is particularly simple.
We reguire that h be almost periodic in t, uniformly for vy
in compact subsets (see Hale [12] pp. 113 ££f). This simply
insures that h(t,x(t)) will be AP for any AP function x.

We also require that

(6.51) Hh(t,xl) - h(t,xz)ll°° < elﬂxl - x2H
for any Xy ¥, € E. The restriction on €y is simply
(6.52) elKl < 1

where K; is the admissibility bound for (6.49) (see (0.3b)).
The unigque AP solution to (6.50} will simply be the limit

of the iterates
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is the ‘unique AP solution to

Yi+l - Ayi+l + h(t,yi)‘.
This is of course an immediate consequence of the confracting
mapping principle.

The same proof will yield AP sequence solutions to the

discretized version of (6.50).

(6.54) W1 = CpWn t k g(nk.k.wn+l:wn)

Here the nonlinear term is

_l -_
[ (0, T-KB A(t+2k) ~[Boh(t X, 1) )

-1
+ 1 Bjhltxy)]
(6.55) g(t,k,w,w) = 3=0
0
L 0
-1 _ ¥o-1
where w = : and w = | : . Observe that g is,
X, S X4 :

for fixed k, AP in t uniformly for w and w in compact
subsets, and that g will have an O(El) Lipschitz constant

which we call e, 1.e.
(6.56) lglt,k,wyswy) = gl e, wy,wdh
€ max [naz-ﬁln p Mwg=w 01 .

Now if K is the admissibility bound for the linear inhomogeneous

version of (6.54) (see (3.30)) and u = €K < 1 then (6.54)
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will have a unigque AP solution LA which in fact will be

the limit of the iterates LA defined by

!

(6.57) LA 0
Wooi+1 1S the unique AP solution to
Ynelzivl cnwn;i+l * kq(nk’k""rn+1;:i."‘"7n;i)

This is an immediate consequence of the contracting mapping

principle and we note for future reference that

- m
(6.58) Hwn wn;mﬂm = 0o(u) .
Now the first thing to consider is the convergence of

- Y _
w to w. defined as ( nfﬂ 1
n n

] where y is the solution to
¥n
(6.50) (assuming of course that (6.52) holds). 1In fact

as wag seen in Section 3 Gn satisfies (6.54) up to an error

k o(l) (O(kp+l) if everything is smooth). Hence the
k-1

difference z, =W, T W is the unigue AP solution to

(6.59) Z sl " ann + k[g(nk,k,wn+l+ zn+l’wn+zn)

- glokk,w oW )]+ k o(1) (0PTh)
and we have
P
(6.60) Hznﬂm < ullznﬂoo + o(l) {(o(k*))

and since p < 1 this settles the question of convergence.
We now examine the question of the computability of
the solution in the exponentially stable case; that is when

we have constants K and o such that
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(6.61) Iw W,
n j

where Wn is the fundamental solution to the homogeneous |
version of (6.54).

To do this we use (6.58) to reduce the problem to a
study of the effect of round-off errors and errors in initial
data on the solution Wo.m for a fixed m. This will be a
simple consequence of the stability results of Section 3
(see (3.42) ff) for the inhomogeneous equation.

In fact the results of Section 3 show that at the
first iteration we would solve (for n > 0) for.a. solution

* ' -
W
n

i1 which is related to LAY by

* _ r ~akn
(6.62) Wn;l = wn;l + O(k™) + Ofe )

We now consider the effect of this error on the second

iterate. Assuming, for the moment, exact calculations and
*

exact initial data, we obtain a solution Wl which solves

r

the equation

*x * *
(6.63) Woil:2 T Co¥n.2 + k g(nk,k,wn+l;l,wn;l)
x
If we let zn;i = Wn:i - Wn;i for i = 1,2 then we obtain
(6.64) zp+l;2 = ann;2 f k[g(nk,k,wn+l;l+ Zn+l;l’wn;l+zn;l)

- g(nk’k'wn+1;l'wn;l)]

The last term can be written (using (6.62)) as

-akn

k O(kr) + k Ole } and we have

-67-



n n
-1 r -1 -ak]
(6.65) z_., =k ) WW.  0(k) +k ] WW. 0O(e )
n;2 j=1 nj 321 n j
_ -a.kn
= o(k") + 0(e™™" kn) = o) +o0(e 1 )

where ®; can be arbitrarily close to w. We have used
(6.62), (6.61l) and the trivial fact that t = O(eSt) for
any positive 6.

It is now ocbvious that (6.65) is preserved if we
include in the equation for w;;z {(see (6.63)) the effect
of roundoff and errors in the initial data of w:;z
(compared with the initial data for Wn;2) and it is also
obvious that this process can be repeated for m itera-

tions, for any fixed finite m, and this establishes the

computability of the solution W
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Part II. Extensions to Partial Differential Equations

We will now use the techniques of Massera and Schaffer,
in the simple exponentially stable case, to obtain AP solu-
tions to a certain class of inhomogeneous partial differential
equations (PDE's) to which one can apply ODE formalism by
use of the Hille Yoshida Theorem. The homogeneous eguation
has been extensively studied by Krein [13], to which we will
refer often. A more succinct study of the Hille-Yoshida |
Theorem can be found in the appendix of Lax and Phillips [14].

Throughout Part II E will denote an infinite dimensional

Banach space.
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7. Existence Theorens

Consider the linear equation
(7.1) y = By

where B is an unbounded operator. The study of the solutions
to (7.1) has been answered by the Hille-Yoshida Theorem in
the case that the resolvent RA(B) (= (AI-B)_l) satisfies

the inequality

(7.2) HRA(B)“ < . A >0 .

e

A more general formulation is given in Krein (in particular

Section 2, Chapter 1). Krein shows that if:

(7.3) (a) B is closed

(b) B is densely defined

(c) IRY(B)I < L, RP.A>w,
(Re X- w)
then there exists a semigroup Zt » £ >0, such that:
(7.4) (a) Zt is strongly continuous
(b) ZO =1
(c) 1z < Me®t

(d) lim [ZA—I]e/A converges 1ff e € Dg
A0
and in that case it converges to Be
(e) if e € Dy then for t > ty the unique
solution to (7.1) such that y(to) = g

is simply y(t) = Zi_t © (uniqueness is
0
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shown in Theorem 2.7, page 47)

(£) Z.: Dy = Dy and commutes with B for.t >0
For a well posed proﬁlem we obviously require w < 0 in (7.4c).
To insure exponential stability we are going to proceed as
if w = 0 and introduce our own damping term which will be
allowed to depend on t. The reader should note that if
w < 0 this term is not necessary. It is well known (seé;
Krein, page 43) that one can always introduce an equivalent
norm so that the factor M in (7.4&) can be replaced by 1,
however we will eventually approximate B by a family of
‘bounded operators B where

h

B, t
(7.5) 128 = e o<m

and we may not be able to introddcé a norm so that M can

lbe taken as 1 fér all h, and thus we will leave M unspecified.
Now to make the homogeneous eguation exponentially

stable we introduce a damping term -8(t) and consider

the equation

(7.6) y = [B - 8(t)]y

For conditions on § we first let it be a scalar AP function

such that

(7.7) R.P. (m{8)) > 0 .

t .
dr 6(r)} then

This implies that if g(t,s) = exp{- J
: s

(7.8) lg(t,s)| <K g ale8) t>s,
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as can easily be seen.
It is also possible to permit & to be an AP operator
function satisfying certain commutivity properties. Speci-

fically if Y(t) is the fundamental solution to

(7.9) Y = - §Y

then

(7.10) (a) Fy(e)y syl < k 7288 o5
(b) §(t), Y(t), Y_l(t) commute with Z.

for all £ and all r > 0
(c) §(t), Y(t), Y_l(t) map DB into itself

and commute with B.

These hypotheses permit us to essentially treat § as a

scalar in the following analysis. If we define

1

(7.11) glt,s) = Y(£)Y ~(s)

then the "fundamental solution” to (7.6) is

(7.12) g(t,s)zt_s . + 3: s,
and
(7.13) lglt,s)z 0 < &M -alt=s) o o _-oa(t-s)

after a redefinition of K.

Now consider the inhomogeneous egquation
(7.14) y = [B-8ly + £(t)

where f € i(E) or C_(E). We want to study bounded (for all t)
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solutions to (7.14). First we see that any such solution
is unique. 1In fact if Ww(t) were a bounded solution to

(7.6) we would have (for t > s)

(7.15) wit) = Zt—s g(t,s) w(s)

andw = 0 follows immediately on letting s » -=.
It is equally simple to see that any C_, solution must

be given by

t
(7.16)  y(t) = J glt,s) 2 £(s) ds = C(f)

This is in fact an immediate consequence of letting ty T =™

in the variation of constants formula
t

(7.17) ylt) = g(t,to)Zt_toy(t0)+ f ds g(t,s)Zt_Sf(s)
t

0
which is proved in Krein (Theorem 6.1, page 129) for the
autonomous case, and it is a trivial matter to see that the
same proof will work if & is time dependent. Note that (7.17)
need not be a solution to (7.14), but any such solution
must be given by (7.17).

We now consider tﬁe operator C defined by (7.16).

¢ is a bounded operator mapping L_ > L_ - Boundedness is

an immediate consequence of (7.13) and in fact

(7.18) Iyl <K (=5 1€l

The integrand is obviously continuous if £ € C_ and the

only point in question is its measurability for a general
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f € L_ (for measurability of functions in a Banach space
see Hille and Phillips [15]). However it is shown by Krein,
and will be used crucially verg shortly, that Zr is the
strong limit, pointwise, of e n" where B, is a bounded
operator (Theorem 2.9, page 48). Since eBnr will be
norm continuous this establishes the integrand as the
pointwise limit of measurable functions, hence measurable.
We will now show that vy as defined in (7.16) is a
solution to (7.14). We will make use of the above mentioned

approximation theorem of Krein (Theorem 2.9). It is shown

that there exists a squence of bounded operators Bn such that

(7.19) . ({a) H(B-Bn)eﬂ > 0 (Ve € DB)

T e

B
n n _ n
{b) Il(zr zr)eu = >0 Ve , r > 0, where Zr = e
(¢} Iz <M, © >0
r — —
(d) Bn' Zg (r > 0) satisfy the same commutivity

relations with §(t) (7.10b,c) as does B and Zr.

We only have to point out that (7.19d) follows from the

2

explicit definition of Bn as ~AnI - AnR (B ) where An + @

An

(see Krein, page 49). We point out that the operators Bn
cannot in general be considered as spatial discretizations.
A family of such approximations will be assumed in the
following section.

Now consider the operators Cn(f) defined by
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f(s) ds = Cn(f) .

t
{7.20) Y, = { g(t,s) zi_s

It follows immediately that the operators C  are uniformly

bounded operators mapping L_ into C, and in fact
(7.21) Iy 0, < KISl

where we take the same bound as in (7.18). It is also

immediate that Y, is the unique C_ solution to-
(7.22) y, = [B -8ly + £

and Y, is AP if f is.

We are going to show that Cn + C strongly in a certain
subspace 6f'Lm. Specifically define S to be the subspace
spanned by the functions whose range has compact closure. It
is weil known (see Amerio [16]) that R.E_S. For £ € S we

will have
(7.23) Cn(f) + C(f)

To show {7.23) note that by the uniform boundedness of C
it is sufficient to show it for a dense subset of S and by.

the definition of 8§ it is sufficient to take f as

| I
Whju

(7.24) - f xj(t)ej

j=1
where e, € E and X3 is the -characteristic function of a
measurable set. By liﬁearity we only have to work with

one term in the sum in (7.24). Thus if T is some measurable
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set let £ = Xp®- Then wn(t) = y(t) - yn(t) is explicitly
(7.25) wn(t) = f ¥ (t-r) g(t,t—r){zr—zile dr .
0

Estimating (7.25) we obtain

oo

-Qr n
(7.26) "Wn"m < K f e l (zr Zr)ell dr
0

and (7.23) is an immediate conseguence of the Lebesgue
dominated convergence theorem.

Observe that (7.23) implies that C(£f) is continuous
if £ € 8 and it is AP if f is.

Now consider the almost periodic case. First we point
out that if § and f are Cl (AP derivativeg) then y is

also and in fact
(7.27) y = C(=0y + £f)
This is trivial if we observe that

(7.28) y, = C,{-6y, + £)

and if v is defined to be the right-hand side of (7.27) we

have
(7.29)  §-y = [c-C_}(-by) + c_(-Bly-y ) + Ic-C 1(H) ,

and clearly

(7.30) b (y=y )M > 0

n-—+»

Equation (7.27) is now an immediate consequence of letting
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n » = in the equation
: t

2
{7.31) yn(tl) - yn(tz) = f yn(t) dat
tl'
We next show that y satisfies an integrated version

of (7.14). Specifically

{7.32) y(tl) - Y(tz)

ts ty s
=B f at y(t) - f dt S(e)y(t) + f at £(t)
£y ty t)

Since DB is dense and B is closed it is sufficient to show

(7.32) when f is of the form

Now observe that Bf is AP. It certainly follows that
(7.34) By = C(Bf) .

In fact this holds whenever Bf €C, and is a simple conse-
guence of the closure of B, approximating the integral in
(7.16) by Riemann sums over finite intervals and then
noting that B applied to each sum is the Riemann sum
éi}proximating C(Bf).

Now the same property certainly holds for B and Cn_i.e.
(7.35) B Y, = Cn(an).

Finally since by its construction B commutes with Z
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(Krein, Theorem 2.9) we can write
(7. 36) Bny = C(an) .

Since Yo satisfies (7.22) we have

(7.37) yn(tl) - Yn(tz)

2 t2 2
= Bn f dt yn(t) - f dt G(t)yn(t}+ f dat f(t)
& t1 1
t2 t2 t2
= B f dt y(t) + [B -B] f dt y(t) + B_ J dt (y_-y)
£y £ 1
ta t2
- f dt 5(t)yn(t) + j dt f£(t) .
© 5}
2
where the fact that f dt y(t) € Dy is a conseguence of
t

(7.34) and the same ty%e of closure argument as followed

that equation.

If we now let n + « in the last eguation in (7.37) we
t

see that the term B J 2 dt (yn—y) o 0 because
s
(7.38) B ly,~y) = [c -Cl(B f) = [C -CI(Bf} + [C -CI((B -B)f)

and the right-hand side of (7.38) clearly = 0 in the sup norm
as n > @, It therefore follows, on letting n + « in (7.37),.

that (7.32) does in fact hold for functions of the form (7.33)
and thus for all f € A,

Now if § and f are Cl (hence y is) we can show very easily
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that (7.32) implies (7.14). In fact since y is c! we can

let h + 0 in the eguation t+h t+h

t+h
B f ds y(s) f ds §(s)y(s} f f{s)
y (t+h) -y (t) £

ot

(739 R = —5 - - R + =5
where h can be positive or negative, using the closure of B.
Similariy (7.14) will hold if we only reguire Bf is AP.
In fact since in that case By is AP, B can be brouéht inside
the integral in (7.32), which can then be differentiated
directly.

We point out that in both ﬁhese cases both § and By are
also AP. For‘future-use we point out, using the intégral
equation (7.32) applied to (7.27), that if 6 and f are C2

then y is C2 and vy satisfies
(7.40) v = [B-8ly - 8y + £

i.e. (7.14) can be diffe:entiated formally. (Note'in'parti—
cular that if Bf is AP, B2y is AP.) This argument can
obviously be extended; namely if f and § are cP then y is cP

and we have

- -1 - -
(7.41) ¥ = syl £ o (Tl 4 sy™h L, r=1,. .0,
We will now examine briefly the case that £ € S.
We still have y + Y but (7.30) need not hold since S8y and £
need not belong to §. However we see very easily that if

f € L, and
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X Clg)

(7.42)

b4

n Cn(g)

then we will have xn(t) > x(t) pointwise and boundedly. In

fact if wn(t) = x({t} - xn(t), then

(X; _ .
(7.43)  lw (£)} <K J "™ (z,~2]) glt-r)l dr

0
" and the Lebesgue dominated convergence theorem is still

applicable and hence (7.31) will still yield (7.27), if we

use the bounded convergence theorem and the fact that

(7.44) §(t)-§n(t) = [C-C_1(-8y+f) (£)+ Cn(-G(y-yn))(t) >0

n+co
Thus y has a bounded derivative. Now if we assume that f is

of the form

(7.45) £=xb ., b € Dy ,

then the derivation of (7.32) from (7.37) and (7.38) still
follows, if we use the bounded convergence theorem for inte-
grals over finite intervals. Since finite sums of such f's
are dense in S8, (7.32) holds for all £ € S and if Bf € § or
§ and f are Cl, y will still be the unigque C_ solution to
(7.14). Thus the theory will hold for a certain class of
bounded, non AP, inhomogeneous terms, but is not as simple
as the AP case and in the future we will restrict ocurselves
to this case.

Finally we point out that (7.32) can be derived by
brute force differentation of the formula (7.16) but use of
the approximating operators Bn permits a cleaner and more

straightforward development.
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8. Discretization in Space

The operators Bn which proved so useful in the
preceding séction need not correspond to a discretization
in space. We therefore postulate the existence of a
family of bounded operators Bh , where h will generally

play the role of a spatial grid size, such that:

(8.1) (a) B. are defined and bounded for h € (O,hol

h
1 :
(b} “Bh" =0(—=) ,m>0
h
(c) Bh generate bounded semi-groups {(i.e.
B_t
e 1 ;zlél!imfortzo)
(4) e € DB implies H(B—Bh)eﬂ -H:E~> 0
(e) If 8§ is not a scalar function, then the

commutivity relations (7.10)b,c hold with
h
B and 2 replaced by By and Z.
(f) 1If e € Dy (or any dense manifold in Dy

invariant under 2 for r > Q) we have

HBtheH < K(I,e) for r € I, where I is any

compact interval on the nonnegative real axis.

We point out that (8.1f) is designed to insure that

Zi > Zr strongly, for all r > 0. This is certainly reasonable

since Bthe converges to BiZ e. It is of course trivial if
Bh commutes with Zr' Also note that the convergence in (8.1d)

does not deal with the order of the approximation of By to B.
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This will be dealt with by a subsequent assumption.
Before proceeding further, we indicate a simple example

of the case we are considering.

(8.2) (a) E =~L2(0}2ﬂ)
(b} B = 5% (with periodic boundary conditions)
_ u(x+th)-u{x~h)
(c)  By= Zh

In this example (8.1f) is unnecessary as Bh in fact commutes
with Zr.

Now associated with Bh we have the eqguations

(8. 3) y = [Bh—ﬁ]y

(8.4) y = [Bh—G]y + £

The homogeneous eguation (8.4) has as its fundamental solution
B t

Yh(t) = g(t,s) e h , and is exponentially stable, i.e. there

exist constants K and o independent of h such that

(8.5) 1y, (vt <k TS e s,

Associated with (8.4) we form the operator Ch where
t

(8.6) vy = G (£) = f g(t,s) zﬂ_s £(s) ds

for any AP £, Yh is the unique AP solution to (8.4).
Equation (8.5) shows that the operators Ch are bounded

uniformly in h, i.e.

(8.7) IlyhllOo < KE£l_
where K is independent of h.
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Now our first task is to show that Ch ™ C strongly.
Using the results of Section 7 (see (7.23) ff) it is suffi-
cient to show that Z? >z, strongly, for r > 0. This will
be an easy consequence of (8.1f). In fact if e-e Dp (or
the manifold described in (8.1f)) and if y = Z.e ,

Yp = Zie , then 1if wh = ¥y-yy we will have

"h _ _
wo o= Bhwh + [BlBh]y

{(8.8) .
wh(O) = 0.

From (8.8) we can write
t

{(8.9) wh(t) = f ds Zh [B B ]Z e
' 0

and the fact that “wh(t)H > 0; in fact uniformly on compact
intervals, is an immediate consequence of (8.1f) and the
Lebesgue bounded convergence theorem. The result for any

e € E follows from the uniform boundedness of the
operators Zi and the denseness of the manifold of (8. lf)

Now the fact that

for all f € A (in fact for all £ € S} is not any improvement
of the corresponding result for the operators Bn of Sectién 7.
We want to show that the difference in (8.10) approaches zero
as fast as some power of h, and to do this we must require

that B approximate B up to a certain degree of accuracy.

h
specifically we suppose that there exists an operator L
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(unbounded) with Dy, c Dy and such that if e € Dy, we will
have

(8.11) "(B—Bh)e" < C hllzel where 3 > 0

and C and j are independent of h and e.

If we have Lf(t) AP we would like to show that (8.1l)
implies
(8.12) | (y-y ), = 0(h?)

Unfortunately (8.12) requires a further assumption; namely

(a) Z : D+ DL

(8.13)
(b) If Lf is AP then "Lfo(t)ﬂ will be

uniformly bounded for r > 0 and all t.

Assumption{(8.13) is of course trivial if L commutes with Z .o

It is now a simple matter to show (8.12). 1In fact
Wy T YUY, is the unique AP solution to
{8.14) Wy = [Bh-6]wh + (B«Bh)y

whence by (8.7) we have
{8.15) II»;A'rhllcu = O(H[B—Bh]yuw)

and so it is only necessary to study (B—Bh)y. But now if
Bf € A, which will generally follow if Lf € A since L will

be a higher order operator than B, we can write
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(8.16) - [B-B,ly = f dr g(t,t-r) [B-B, ]2 f(t-r)
0

and clearly

(8.17) I {B-B, Iyl = O(n3)

is an immediate consequence of (8.13).

o
[
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9. Discretization in Time by the Multistep Linear Method

We will now apply the theory developed in Section 3
to the spatially discretized equation

(9.1) Yh = [Bh—G] + £ .

Since B, is bounded the theory is immediately applicable and
we can assert that for k sufficiently small (but depending

on h) there will be an AP seguence wn(k,h) which will converge
to w_(k,h) defined by

(9.2) w_(k,h) = .

n .

yh(nk)

and if everything is smooth in t we will have

— - b
(9.3) _ "wn Wnﬂm Oh(k )

where the bound in (9.3) may depend on h. It is only left
to show that the bound in (9.3) is independent of h and to
discuss the relationship of k to h. We will show that what
is required is

k
(9.4} k + === 0(1)

m

h

i.e. there exists a constant ¢ independent of k and h,
such that if k + k/h2m < ¢ the difference egquation corres-
ponding to (9.1) will be exponentially stable with constants

independent of k and h.

_86_



The guadratic dependence on h in (9.4) is restrictive
and will be removed in the following section.

Throughout this section we will use the notation of
Sections 2 and 3. We will also take & to be Cl.

We now fix h and_consider the homogeneous difference

equation on E, (see (3.7)),

L

(9.5) Wopl < U(th~ kan) + k 0(1)wn .

It is clear that this will hold uniformly in k and h if

k + k/hm is sufficiently small, i.e. if we are in a region

. k _ _
(9.6) k + == o(1) .

=

Of course restrictions of the form {(2.6) are included in, (9.4).
Also note from the explicit definition of the full linear
term in (9.5) (see (2.11)) the last term in (9.5) will be
uniform in k and h. For the rest of this section this will
be understood for all "O" signs unless stated otherwise.

If Wn(k,h) is the fundamental solution to (9.5) it is
clear that all we must show is that in a region of the form
(9.4) we will have

-k (n—-j)
cgge t , n>j,

(9.7) nwnwj

where the constants Kl and a; are independent of k and h.

Following the procedure of Section 3 we let

(9.8) v, = T (kB, - kGh)w

h n
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and we then have in a region of the form (9.6)

(9.9) v

_ _ 2
ne1 = L(KB - ké )v_ + k“0(1)v,

Using the structure of the block diagonal operator L (z)
derived in Theorem 1 we can write this as
[I+k(Bn—6n) 0

_ k
(9.10) w = - Vo + kO(k + _fﬁ)vn

n+l
0 Bn h

Here we have used the notation En for the lower block (see
(2.26)) so as not to confuse it with the operator By -
Observe that in (9.10) we have the first appearance of

the term k/hzm. This is because in order to apply Theorem 2
we must seﬁarate out a factor of k in the perturbing term.

Now it certainly follows that in a region of the type

(2.6) we have

(9.11) | ?:% Bl < Kle“'j . Cn > g,

i=]
where Kl and 0 are independent of h and k. We therefore
only have to consider the upper block in the leading term
of (9.10) and in order to apply Theorem 2 we are going to
compare this with Yn;h = Yh(nk) where Yh is the fundamental
solution to

(9.12) Yh = [Bh—G]Yh
Observe that the egstimate

-1 -ok (n-3) .
(9.13) ﬂYn;hY j;h“ < Ke . n > j,
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holds, where K and o are independent of h.

. We will show that'_Yn satisfies the difference

+h
equation
(9.14) ¥ g = [T+kD (k)Y
= [IT+k(B. -8 ) 1Y . + kO(k + —=2)Y
h "n n:h h2m n;h °

Observe that the last term in (9.14) is of the same order
as the perturbation in (9.10).

Equation (9.14) follows easily from the same argument
ag in Section 3 (see (3.13}) and (3.14)) if we simply oObserve

that

(9.15) (Bh -§) = - &

and that (3.15) holds in this case for t > s by (8.5).

We can now apply Theorem 2 comparing the equation

(9.16) 7t

=1
n+lsh — [I+k(Bh-5n)]vn;

h

with (9.14). We simply note that the proof of Theorem 2
indicates that the terms Eg 7 %7 and K, (see thé statement
of Theorém 2) depend only on the constants K and o in (9.13)
and are thus independent of both k and h. Another'applica-

tion of Theorem 2 comparing the equation

_ T+k({B, -8 ) 0 y_
(9.17) v, = ( h n ]Vn

n+l 0 8
n
with (9.10), together with the boundedness of the operators
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T(k(Bh—Sn)), T-l(k(Bh—én)) in the region described by (9.6)
will yield (9.7) with the restriction k + k/h2m sufficiently
small {i.e. (9.4)).

If we now refer to the proof of admissibility in the
stable case given by (3.31) ff we see immediately that (9.7)
implies (LE,LE) admissibility for the inhomogeneous version
(9.5), with an admissibility bound independent of k and h.

It is only necessary to show that the convergence"of ﬁﬁ to ﬁn”“
is independent of h (see (9.3)). This will follow from (3.40)
if we can show Hyﬁ+lﬂ® will be bounded uniformly in h,

assuming that § and f are smooth.

In fact if 6 and f have p+1l derivatives the differenti-
ability properties of Yy, are the same as those of Yn introduced
in Section 7. In addition, the formula given in (7.28) can

obviously be extended (for the operators Ch) to yield

p+l _

+1
Yh yP

p+l

(9.18) h )

c, (£ & (-oy )P T4 oy
p+1]
h h

and the uniform boundedness of the operators Ch immediately

{(note that the argument of C_ in (9.18) does not involve y

yields the uniform boundedness of the derivatives of Y-
y((n+2-1)k

If we now define‘ﬁn = , then (9.3)

y {nk) ]
(uniformly in h} together with (8.12) implies

- - Pondy = 2mp . ]
(9.19) lw,=w I = 0(kP+h?) = o(n“™Pind)

where we have used (9.4) for small k.
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10. The Lax-Wendroff Scheme

The term k/h?m in (9.4} can be improved for operators
such that the Lax-Wendroff scheme is stable for the homogeneous

equation

(10.1) Q = Bw

We will then be able to obtain AP sequence solutions under

the more favorable restriction

(10.2) k + = 0(1) .

First of all we require that ¢ and f are c®.  As shown
in Section 7 this implies that y is C3q It implies further

that f.satisfies

(10. 3) | § = [B-S8ly - 8y + £
i.e. that the basic eguation

(10.4) y = [B=8ly + £

can be differentiated formally.
We can now apply the Lax-Wendroff scheme to (10.4).

Proceeding formally we write, assuming Bf is AP,

| - 5
y(£) + ky(t) + 52— §(t)
2

y(t) + k[B-8ly(t) + &—

k2

"2"’"' ;

(10.5) y(t+k}

(B-812%y (t)

+ [»éy +(B=-6)f +%} + kf(t) =
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2

= [I+kB + 1_3_, B2y () - kby
k_ 2_k o _ kK in_ k :
+ k£ 6%~ B 5 - kemiy+ kie+ Kooy £+ & £

We have written this as an inhomogeneous difference equation
in order to apply techniques already developed.
Now in the expression for y we approximate B by By

2

and in the expression for § approximate B2 by B, for a

h
certain constant ¢ > 0 to be determined (¢ = 1/2 for the
example described in (8.2)). Of course we will have to
assume that Bﬁ approximates B2 in the same sense that Bh
approximates B, but we will leave the precise hypothesis
for later.

Applying these approximations to (10.5} and letting wn(k,h)

stand for the dependent variable we obtain the difference

equation

(10.6) wn+l(k,h) = U(k,h)wn— kdnwn+ kR(n,k,h)wn+ kfn

where
k2 2
{10.7) (a) Ulk,;,h) = T + th + 5 Bch
~ k _ E .
(L) fnm f + 7l [Bch § 1£ + 5 fn
k 2 k ; _ k_
(e) R(n,k,h) = 5 an -3 Gn anBch = O(k+ m}.

h
Now U(k,h) represents an approximation to (10.1). We
choose ¢ so that for

k

{10.8) %o

= 0(1)
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this disgcretization is stable, i.e.

(10.9) lu(k,h) "l <H, r> 0.

We are going to use Theorem 2 to show that if IR(n,k,h)l
(i.e. kK + k/hm) is sufficiently small, then the homogeneous
version of (10.6) is exponentiaily stable; that is if

Wh(k,h) is the fundamental solution to the homogeneous

equation, then there exists constants Kl and q independent
of k and h such that

. -1 -aik(n—j) '
(10.10) | HWth I < Kl e ’ n > j,

.where for simplicity we have suppressed the dependence of W
on k and h; Once we have obtained (10.10), (L:,LE) (and
(ﬂn,in)) admissibility will follow in the usual manner.

To obiain (10.10) we observe that since we can allow
k + k/hm to be as small as reguired, Thgorem 2 permits us
to neglect the perturbing term R. Also by neglecting a
\pérturbation of the same order as kR we can work with the

simpler equation’

(10.11) Wil T [T an] U(kh)wn .

Now consider the function g(t;s) defined in (7.11);
- Using the same argument given in Section 3 (see (3.16)), we

see that g = g(nk,0) will satisfy the equation

' _ . _ 2
(10.12) Intl {I+kD_lg = [I-ké_+k™0(1)lg,
where the "O" sign in (10.12) is independent of n. Thus by
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again neglecting a perturbation of the form kO (k+k/h™)

we obtain finally the equation

(10.13) w = [I+kD_] U(k,h)&n ]

n+l

But the fundamental solution to (10.13) is simply
(10.14) WW. = g(nk,3k)U(k,h)""

as one can verify immediately, using the commutivity
properties of 9, with Bh (see (8.le)) in the case that
§ is an operator. Now the estimate

-1 _ —ok({n-7)

(10.15) Ilr?\’fnwj I <Ke / n > j,

follows from (7.10a) and (10.9) and we can now apply
Theorem 2, noting, again that the terms Kyr 0qr €4 depehd
only on the terms K and o (see the hypothesis of Theorem 2),
to obtain (10.10).

We now have (L:,L:) (or {ﬁn,in)) admissibility for
(10.6) and it is only necessary to study the convergence in
the case that the inhomogenecus term is given by (10.7b).

To do this we must now assume that Bﬁ approximates Bz; namely

that there exists an operator L such that if e € D, N D 2
L B

then
(10.16) H(Bz-Bi)eH < c,pliLel

We also assume that L satisfies the same assumption as L

(see (8.13)) so that if Lf and if are AP we can conclude
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(using the same argument as in (8.16) and (8.17))

(10.17) (a) 1 (B-B )yl _ = o(nd)

(b) m(BZ—Bﬁ)yﬂm = oml) .

If wn(k,h) is the unique AP solution to (10.6), we can now
show that W converges. to yn uniformly in.n.

In fact since y is CB} Yn satisfies (10.5) up to an error.
O(k3). If we then make use of (10.17) we see that Yq will
satisfy (10.6) with an error kO(hj+k2), where this is uniform
in n. Then as the admissibility bound of (10.6) is independent

of h (by (10.10)), we can conclude

- _ = 3 2, _ j, .. 2m
(10.18) Hwn ynﬂm O(h”+k”) = O(h-+h™ )

where we havé used (10.2).
For the example described in (8.2) we will have
(10.19) L=— and L = — , c=35,m=1, j=2,
5 3 4 2
b4 X
{(periodic boundary conditions)
Finally we would like to point out that in the term %n
in (10.7b) one can replace Bchfn by Bf, without changing

the order of the error. This is simply because LE is AP,

hence

(10.20) 1 (B-B )l = O(hY)
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1ll. Linear Perturbations

We now consider the perturbed system
(11.1) y = [B-8ly + D(t)y + £(t)

Here D(t) is a bounded operator for each t and is almost
periodic as an operator function. We also require

(11.2) IDl_ < e

where €g is to be specified.
The first step in finding AP solutions to (11.1) is

to solve the eguation
(11. 3) , y = C(Dy) + C(£f) .

This equation can be solved uniguely by the contracting map-
ping principle provided u = eoﬁ < 1, where K is the norm
of C (see (7.18)). The contracting mapping principle alsc
shows that the assignment of y from f is a bounded operator
and in fact

K
1-u

(11.4) Iyl < Vel = R IEN

1

where Kl depends only on €4 and is independent of D.

We want to show that y satisfies {(11.1}, and if we
assume that D; § and f are Cl, the results of Section 7
show that it is sufficient to show that y is Cl. This will

follow if we observe that y will be the limit of iterates
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yi-defined as

(a) Yo £ 0
(11.5) - :
(b) Yie1 = c(Dyi) + C(f) .

We will then have for each i

(11.6) = c(oy;) + c(-8y; + Dy, + f)

Yiel
If we then define y as the unigue solution to

(11.7) 7 = C(Dy) + C(-3y + Dy + f)
we will have
(11.8) b4

To see (11.8) note that ly.l  is bounded uniformly
in i (from (11.6) and p < 1) and if 94 is defined as
{(11.9) . gy =sup ﬂy—yrll

: r>1i
Then {gi}_form é. nonincreasing sequence satisfying
(11.10) : g, < u g, + o(l}
_ i+l — i i e
and (11.10) implies g, > O which, in turn, implies (11.8).
The fact that y = § follows exactly as in Section 7 (see
(7.27) £f£). Observe that since y is AP, By is also AP

(from (11.1)).

Now consider the operators ch defined by (8.6). The

equation
(11.11) Y, = G (Dyy) + C, (£)
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can be socolved exactly as (11.3) can. (For simplicity we
suppose that ﬂCh" = Icl so that we have the same restric-
tion on e4.)

OQur first task is to show that Y, > Y- This will be a

simple consequence of the strong convergence of C,. to C.

h
In fact if Wh T Y Ty we have

(11.12) Wy, = [C-Ch](Dy) + Ch(th) + [C—Ch](f)
whence
{(11.13) lw 1 < plw Hm + o(l)

h = h ho0

and this certainly implies HwhH > 0.

h+>0

Now of course this would not e useful unless we could

prove

(11.14) lw 1, = 0(hd)

This estimate can be shown provided we make certain
assumptions on the interaction of D and the operator L
defined in (8.11l). We first observe that Wy satisfies

the egquation
(11.15) wy, = C (Dw,) + C ([B-B,ly)

and using the analogue of (ll.4) for the equation (11.11),

together with the uniform boundedness of the operators Ch '

we see

(11.16) lw, I = ol {B~B Iyl ) ,

hIIoo
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and it is sufficient to show
(11.17) | (B-B, 1yl = O(n))

To obfain (11.17) we make an assumptidn on the operator
L: We will call it Assumption I &s we will later have to make
the same type of assumption for other operators.

Assumption I: Suppose theré exists a sequence of
operators Ly = I, L

ll‘o-'—'Ln = L SuCh that

(11:18) (a) Li aré closed
(b) E=D 2D 2...20D
h Ly = by Ln
(&) Li commutes with Zt for t > 0 (;.e. Zt: D +DL_

. = , , ; c
and L;Z.e Z Lie for e DL_)

t t
i
(d) If e € D, then D(t)e €D and
L L
2 ')
)
L,D(t)e = } . E;(t)L.e
% 520 3
where the operators E?(ﬁ) aré bounded and AP,
and E} = D.
Assumption I is clearly motivated by the example where
D{t) is multiplication by seme function d(t,x) (x is the
spatial variable).
Now Assumption I implies that if Laf is AP then Lgy is'AP,

for & = 1,...,i. First note that if z = C(f) then

{11.19) LRZ = C(LRf)

This is a consequence of (ll.18a,c) using the same argument
as was used for B (see (7.34) ff). Now if we define Zy, 4= Llyi

where the y; are defined in (11.5); then it certainly follows

-99-



from -(11.18d) that is AP for i and for £ = 0,...,n.

zZ. .
Lii

We will now show that the sequence {Zk-i} converges as i+ =,

’

To see this first set £ = 1. We then have

(11.20)  2,,5., = C(Dz ) + C(Eg(t)y;) + C(D)
and Zy .4 Tz . where zy is the solution to
(11.21) z) = C(Dz)) + C(Egy) + C(f) .

In fact Wii T 2y~ zl,i satisfies the equation
(11.21) W) i4p = CDw )+ C(Eq (y-y,))

and

(11.22) "wl,i"m = “zl_?l,i"w T > 0

follows from the same argument used in proving y is Cl
(see (11.9) ff). Finally by the closure of Ll we must
have z, = Lly. It is clear that a simple induction, using
the same proof, will establish that

(11.23) LYy e ka ' £ = 1,...,0n.

In particular L (= Ln)y is AP and (11.17), hence (11.14)
is valid.

Finally we point out that if we assume a chain of
operators, as in Assumption I, for the operator B, we will
then have BDy AP. We will also have to make such an
assumption for the operator L {(see (10.16)), when applying
the Lax-Wendroff scheme to (11.1), as will be discussed

shortly.
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We will now apply to (11.1) the two methods of time
discretization that have already been described. We are
interested in the existence of AP sequence solutions, or
equivalently exponential‘stability for the homogeneous
difference equation, with k and h restricted according to
relations (9.4) and (10.2). As one might expect this will
be a simple conseguence of Theorem 2, provided €9 is
sufficiently small.

We consider first the linear multistep scheme as
discussed in Section 9. Since the linear term Cn of the
difference scheme (see (2.11)) is a smooth function of its
2+1 arguments, it follows that if k + k/hm is sufficiently

small (i.e. lkB 1 is small) then the difference equation

h

for‘(ll.l) can be written

__ . , )
(11.24) Wi = Cwo *kOleghw +k £

n+1l
where C; is the linear term corresponding to the ﬁnpertﬁrbed
version of (11.1), i.e.

(11.25) y = [Bh_a]y + f

Since we have shown in Section 9 that in a region‘of the form
: -
(11.26) k¥ 5 = 0(1)

the unperturbed homogeneous difference equation

K;l.Z?) LA c” w

is expénentially stable, with constants K; and oy independent
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of k and h (see (9.7) ff) it will follow from Theorem 2
(see the remark follqwing (9.16)) that in fhe same region
the homogeneous version of (11.24) will be exponentially
stable if € is small enough. It then follows easily
that the inhomogeneous equation (11.24) will have (LE,LE)
(or (a",A")) admissible, with an admissibility bound
independent of k and h.

We can thus obtain AP sequence solutions to (11.24)

and, as shown in Section 2 (see (9.18) f£f), we will obtain

p+1".
h [=%]
However, as one can trivially see, if D, §, and £ are Cp+l

convergence of 0O(kF) provided y is bounded in h.
then the same argument used to show y is Cl (see (1l1.6) ff)
can be repeated p+l times and applied to the operators Ch
as well as C to show that y and Yy, are Cp+l and in fact (11.7)
can be generalized to (compare with (9.18})

i

)

(11.28) y' = c(py)) + c([(D-8)y]* - (D - &)y" + ¢

i=1,...,ptl,

with a similar formula for Yy and C This certainly shows

h
that HY;" will be bounded in h for i = 1,...,p+1l and
thus that we can obtain a complete extension of the theory
of Section 9. We note in passing, that the same proof
which led to (11.13) will show that yi + y .

The extension of the Lax-Wendroff scheme will be just

as simple. In fact (under the assumption that D, § and £

are C3) the difference equation for (11.1) will have the
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same linear term as the equation for (11.25), (10.6)

except for a perturbation

(11.29) k[D_ + 5 (B - 6,)D, + D (B = 8.) + Df + D) ]
as one can easily see by carrying out the expansion of
Section 10 for the equation (11.1). It follows that if
k/hm = 0(1l}) (so that k"Bch" is bounded), Theorem 2 is
applicable, provided k' and £q are sufficiently small. One
can then obtain AP sequence solutions and carry out the

convergence argument of Section 10 (see (10.17) f£f),

with the only difficulty being the verification that
(11.30) 1 8%-2)yl, = 0(nd)

and this will follow immediately if one assumes a chain as

in Assumption I for the operator L introduced in (10.16).
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Appendix. Proof that (L_,L_) Admissibility Implies

an Exponential Dichotomy.

Here we would like to give a simplified proof of the
proposition that (A,A) admissibility for the inhomogeneous
equation
(A.L1) y = Ay + £
implies an exponential dichotomy for the homogeneous eguation
(A.2) | v = Ay
It is assumed of course that A(t) is AP although we will
actually do the L_ case. The proof is valid only if the
underlying space E is finite dimensional and we can then
regard A as a matrix and v and £ as m vectors, where m is
the dimension of E. The reader is referred to Section 5
where an entirely similar proof for the difference equation
case is given.

The general proof is given in M & S (p. 344, Theorem
103.4), but this proof relies strongly on preceding material.
A finite dimensional proof is given in Coppel {p. 134 ff)
for an equation on [0,«). His proof can be extended to an
equatioﬁ on the whole real axis, but the proof given here .
is simpler and more in keeping with the ideas of Massera
and Schaffer.

It is shown in M&S (Theorem 103.A) that (A,A) admissi-

bility implies (L_,L,) admissibility and this will be our
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starting point. We thus assume that for every f in L_ , (A.1)

has a unique solution y in L_ and the estimate
(A.3) Iyl . < Kb£b_

will hold for a certain constant K.

Now let Sl-be the subspace of initial data which gives
rise to solutions to (A.2) that are bounded for t € [0,®).
Let S, be the analogous subspace giving rise to solutions
that are bounded for t € (=~,0]. We must have 5, N 82='{0}
because any nontrivial; bounded solution to (A.2) would
violate the unigueness requirement of our definition of

admissibility. Let S, be any subspace complementary to

3
Sl © 82 so that
(A.4) E = Sl ® 82 & S3
Let Py,P,,P, be the associated projections, i.e. Py is the
projecticn onto Sl along 82 & S3 P ete. We have
(A.5) I =Py + P, + P,y
Ple =0, i=1,2,3; j=1,2,3; 1i# j.

We will first show S, = {0}, i.e. P, = 0. This will
follow from the variation of constants formula, just as in
the difference equation case. If f has compact suppoft and
v (t) is the unigue L_ solution 'to (A.1l), then since y is a

bounded solution to (A.2) for large |t], we must have
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(A.6) (&) Poyg = = f sz'l(s) f(s) ds
0
(b)  Pyyy = - f PY “(s) £(s) ds
0
0
(c) P1yy = f PlY—l(s) f(s) ds
0
(Q) P3Y6 = J P3Y—l(s} f(s) ds

Here Y(t) 1s the fundamental sclution to (A.2).

Now for any vector gz € E, if we set £ = Y(t)z

X10,11 |
then (A.6b,d) yield immediately Pjz = 0 and we can conclude

P3 =0, i.e.

Using (A.6a,c) we also see that for any f with compact

support we have

{(A. 8) ylt) = f G(t,s) f(s) ds
where
Y(t)PlY_l(s) ' t > s
(A.9) G(t,s) = -1
=Y (8)P,Y “{s) . s >t

We will next use (A.3) to show that for every fixed t,

G(t,s) is in Ll(—w,w) as a function of s, and in fact
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(A.10) f ds 1G(t,s}1 < K

-

where K is given in (A.3). This is a simple consequence of
using (A.8) as an operator on L_(I}, where I is any compact

interval to conclude that

(A.11) f ds IG(t,s)l < K f
I
and then letting I + (-w,=}.

We now will show that (A.10) implies

(A.12) 1G(t,s)1 = 0(1)

To see this we simply observe that v"1(s) satisfies the

adjoint equation

(A.13) Z = - 2 A(s)

where we have used "'" to stand for d/ds. Hence fixing t

and considering the region s < t, we have
(A.14) G(t,s)' = - Glt,s) A(s)

Now since A is bounded it follows that G'(t,s) is in L,, as
a function of s, on the interval {(-»,t] with an L, norm

which can be bounded uniformly in t. This of course means '
that ¢({t,s) must approach a limit as s - -« and since G(t,s)
is in Ll {({as a function of s), this limit can only be =zero.

We thus have

S .
(A.15) - G(t,s) f dr G'(t,r) = 0(1) , s < t,

.
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and a similar argument establishes (A.12) for s > t.

We must now show that (A.1l2) can be replaced by an
exponentially decaying factor, and to do this we consider
perturbations of (A.l) and (A.2); namely for small e > 0

consider the equations

L

(A.16) v = [A-cIly + £

(A.17) y = [A-eIly

If ¢ is sufficiently small we will have (Lm,Lm) admissible
for (A.16). This is a simple consequence of the contracting
mapping principle analogous to the argument of Section 4C (see
(4.9) £ff} . The contracting mapping principle will also show that

the admissibility bound for (A.16) will be given by (see A.3)

(A.18) 12€=‘“—I'{":"_<_K: lel < &4 »
(1-eK)
if €5 is sufficiently small. Thus the admissibility bound

for (A.l16) can be taken independent of £, if ¢ is small
enough.,

Now the fundamental solution to (A.18) is

-t

(A.19) ¥ (t) = e Y (t)

and if »%, PS denote the projections replacing Pl and P2 ’
while G®(t,s) is the new Green's function, then the analysis
which led to (A.12), and which depended only on admissibility,

is equally valid here and we can conclude
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(a.20) he%(k,s)f = o(1) ; 16%(¢,-)0. = o(1) ,

1

where the bound in (A.20) can be taken independent of ¢
{(because of (A.18}).
The estimate (A.20) means in particular that for small

¢ there is a constant K2 independent of ¢ such that if s> t,

(A.21) ﬂth)ngfl(S)u <K, -e(s-t)

and it is only necessary to show that

p€ = p
(A.22) 1

B0 = M

P =P

2

To prove (A.22) we let Si and Sg replace Sl and 82.

It then follows from (A.12) and & > 0

s. c gt
(A.23) -
52 £ %

and (A.22) will be established if we c¢an show that the ranks
of the stable and unstable projections are unchanged for

small £, and this, in turn, will follow from

(A.24) 427 - Byl = O(e)

To obtain (A.22) we set He(t,s) = Gs(t,s) - G(t,s).
Now for any f with compact support we let y and ye‘be the
unique bounded solutions to (a.1) and (A.16) respectively.
Ifw, =Yy -y we see that We is the unigue bounded
solution to

(A.25) LA S



and we can conclude from (A.3) together with its analogue
for (A.16) that
(A.26) bw 8, = o(e)lEl

Now ws can also be written as

o
¢

(3.27) w(t) = fds H(t,s) d(s)

-0

and using the same argument that led to (A.1l0) we see that

o€

(A.28) f ds HHE(t,s)H = O(e} .

(Note that the bound in (A.28) will be independent of t,
although we will only use it for t = 0.)
Now if s < t we see that as a function of s, He(t,s)
satisfies the eqguation
'

(A.29) g® = - H°A + e G (%,s)

This equation, together with (A.20) and (A.28), shows that

(A.30) f ds 18® (t,s8)f = O(e)

. £ oL . .
and since H {(t,s) is in Ll as a function of s we can write for
s <t

£
(A.31) H® (t,s) = f ds H° (t,s) = Of(e)

and if we set t = 0, s = 0_ , (A.31) yields (A.24), which
proves one part of the requirement of an exponential dichotomy

and the other part follows on replacing -e by +e.
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